期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向多采样率数据的TTPA-LSTM软测量建模 被引量:1
1
作者 王法正 隋璘 熊伟丽 《化工学报》 北大核心 2025年第4期1635-1646,共12页
实际工业生产中,过程变量间存在的时滞和采样率差异会降低建模质量,使得许多软测量模型无法适用。因此,提出一种基于时间感知模式注意力(time-aware temporal pattern attention,TTPA)机制和长短时记忆网络的软测量建模方法。首先,将高... 实际工业生产中,过程变量间存在的时滞和采样率差异会降低建模质量,使得许多软测量模型无法适用。因此,提出一种基于时间感知模式注意力(time-aware temporal pattern attention,TTPA)机制和长短时记忆网络的软测量建模方法。首先,将高、低采样率对应的数据分别重构为短期和长期信息,采用时间感知模块将输入信息分解并考虑时间间隔特性,针对质量相关信息占比低的问题,设计非递增启发式衰减函数对短期信息进行加权,组合后获得长短期信息集成特征,降低因多采样率产生的数据缺失影响。其次,引入特征优化模块实现特征二维滤波,跨时间步解析多元时间序列中的时滞信息,获取更有效的质量相关特征。最后,搭建了基于TTPA的长短期记忆网络软测量模型。通过工业青霉素发酵过程和脱丁烷塔过程的应用仿真,验证了所提模型的有效性和优越性。 展开更多
关键词 多采样率 时间感知模式注意力 长短时记忆网络 软测量 神经网络 过程控制 动态建模
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部