期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于对比增强时间感知自注意力机制的序列推荐
1
作者 于洋 王瑞琴 《电信科学》 北大核心 2025年第1期137-147,共11页
现有序列推荐模型在绝对交互时间的利用上存在不足,导致用户偏好建模不准确。因此,提出了基于对比增强时间感知自注意力机制的序列推荐模型(sequential recommendation based on contrast enhanced timeaware self-attention mechanism,... 现有序列推荐模型在绝对交互时间的利用上存在不足,导致用户偏好建模不准确。因此,提出了基于对比增强时间感知自注意力机制的序列推荐模型(sequential recommendation based on contrast enhanced timeaware self-attention mechanism,CTiSASRec)。首先,注意力权重的计算过程整合了评分数据、绝对交互时间、位置信息和项目流行度;其次,将项目的绝对交互时间和位置顺序融合,生成新的项目位置嵌入;最后,训练过程中利用对序列两次建模结果的对比学习来区分样本间的相似性和差异性,进而提高模型的准确性和鲁棒性。在6个不同领域和规模的数据集上进行的实验表明,CTiSASRec的表现优于目前最先进的顺序推荐模型。 展开更多
关键词 推荐系统 自注意力 时间感知模型 对比学习
在线阅读 下载PDF
融合用户兴趣度的基于自注意力的序列推荐模型 被引量:3
2
作者 贝天石 成卫青 《南京邮电大学学报(自然科学版)》 北大核心 2022年第1期90-100,共11页
序列推荐试图利用用户的连续行为、用户偏好、物品流行度以及用户和项目之间的交互动作进行建模,传统的马尔科夫链(MC)、递归神经网络(RNN)和基于自注意力的模型已被大量应用于序列推荐,但它们只是将交互历史假设成有序序列,忽略各个交... 序列推荐试图利用用户的连续行为、用户偏好、物品流行度以及用户和项目之间的交互动作进行建模,传统的马尔科夫链(MC)、递归神经网络(RNN)和基于自注意力的模型已被大量应用于序列推荐,但它们只是将交互历史假设成有序序列,忽略各个交互之间的时间间隔,也不考虑序列中项目之间交互的可能性存在大小关系以及用户对项目的兴趣度可能随着时间推移而发生变化。文中对基于时间间隔感知自注意力的序列推荐模型TiSASRec进行优化,提出了考虑到用户对项目的兴趣度会发生变化的改进模型TiSeqRec,该模型基于TiSASRec,进一步捕获用户整体偏好和局部偏好,并使用一致性感知门控网络将两种偏好智能结合,预测下一项的内容。通过大量的实验验证了TiSeqRec模型在稀疏、密集数据集和不同的评价指标上都优于已有的最新的序列推荐模型。 展开更多
关键词 序列推荐 自注意力机制 时间感知模型 用户对项目的兴趣度
在线阅读 下载PDF
突发事件中网络评论的情感-主题随时间的演变研究
3
作者 史伟 付月 《计算机科学》 CSCD 北大核心 2022年第S02期195-200,共6页
网络评论的情感主题演变分析对突发事件中网络舆情的控制极具价值。针对情感主题动态性的特点,构建一个基于LDA的情感主题模型,通过对时间与主题和情感的联合建模来分析情感主题随时间的演变,推导了基于Gibbs抽样过程的推理算法,最后通... 网络评论的情感主题演变分析对突发事件中网络舆情的控制极具价值。针对情感主题动态性的特点,构建一个基于LDA的情感主题模型,通过对时间与主题和情感的联合建模来分析情感主题随时间的演变,推导了基于Gibbs抽样过程的推理算法,最后通过微博突发事件数据集的分析结果显示了联合模型较高的准确性和情感主题随时间演变过程中良好的应用性。 展开更多
关键词 时间感知情感主题模型 时间序列 趋势分析 情感分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部