期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于动态主题情感模型的文本聚类算法
1
作者 胡萍 《吉林大学学报(理学版)》 北大核心 2025年第2期528-536,共9页
针对目前已有的相关主题模型中,对大众情感因素考虑不足,难以精准挖掘,同时对社交文本的实时动态演化考虑弱化了模型聚类能力的问题,通过在模型中增加情感层以提取社交文本情感极性特征,并引入先验分布函数,提出一种基于动态主题情感模... 针对目前已有的相关主题模型中,对大众情感因素考虑不足,难以精准挖掘,同时对社交文本的实时动态演化考虑弱化了模型聚类能力的问题,通过在模型中增加情感层以提取社交文本情感极性特征,并引入先验分布函数,提出一种基于动态主题情感模型的文本聚类算法.利用真实新冠疫情Twitter文本数据集进行实验,实验结果表明,该模型的性能优于基线模型,提高了情感特征区分度,使文本主题与对应的情感极性联合生成时间节点,进而使模型有处理时间演化的能力. 展开更多
关键词 动态主题情感模型 文本挖掘 情感标签 时间 文本聚类 困惑度
在线阅读 下载PDF
基于性格情绪特征的改进主题情感模型 被引量:1
2
作者 李玉强 黄瑜 +2 位作者 孙念 李琳 刘爱华 《中文信息学报》 CSCD 北大核心 2020年第7期96-104,共9页
近年来,以微博为代表的社交媒体在情感分析中备受关注。然而,绝大多数现有的主题情感模型并没有充分考虑到用户性格特征,导致情感分析结果难尽人意。故该文在现有的JST模型基础上进行改进,提出一种基于时间的性格建模方法,将用户性格特... 近年来,以微博为代表的社交媒体在情感分析中备受关注。然而,绝大多数现有的主题情感模型并没有充分考虑到用户性格特征,导致情感分析结果难尽人意。故该文在现有的JST模型基础上进行改进,提出一种基于时间的性格建模方法,将用户性格特征纳入主题情感模型中;鉴于微博数据包含大量的表情符号之类的特有信息,为了充分利用表情符号来提升微博情感识别性能,该文将情感符号融入JST模型中,进而提出了一种改进的主题情感联合模型UC-JST(Joint Sentiment/Topic Model Based on User Character)。通过在真实的新浪微博数据集上进行实验,结果表明UC-JST情感分类效果优于JST、TUS-LDA、JUST、TSMMF四种典型的无监督情感分类方法。 展开更多
关键词 主题情感模型 时间 性格特征 表情符号
在线阅读 下载PDF
突发事件中网络评论的情感-主题随时间的演变研究
3
作者 史伟 付月 《计算机科学》 CSCD 北大核心 2022年第S02期195-200,共6页
网络评论的情感主题演变分析对突发事件中网络舆情的控制极具价值。针对情感主题动态性的特点,构建一个基于LDA的情感主题模型,通过对时间与主题和情感的联合建模来分析情感主题随时间的演变,推导了基于Gibbs抽样过程的推理算法,最后通... 网络评论的情感主题演变分析对突发事件中网络舆情的控制极具价值。针对情感主题动态性的特点,构建一个基于LDA的情感主题模型,通过对时间与主题和情感的联合建模来分析情感主题随时间的演变,推导了基于Gibbs抽样过程的推理算法,最后通过微博突发事件数据集的分析结果显示了联合模型较高的准确性和情感主题随时间演变过程中良好的应用性。 展开更多
关键词 时间感知情感主题模型 时间序列 趋势分析 情感分析
在线阅读 下载PDF
基于LDA主题模型的湖泊公园生态系统文化服务公众感知研究 被引量:18
4
作者 张怡 裘鸿菲 《中国园林》 CSCD 北大核心 2023年第7期121-126,共6页
湖泊公园是城市蓝绿空间的重要类型之一,开展湖泊公园生态系统文化服务感知量化研究,对保护生态环境和提升游憩空间质量具有重要意义。以武汉市8个典型湖泊公园为研究对象,爬取公园网络评论数据,利用LDA主题模型挖掘潜在主题,结合社会... 湖泊公园是城市蓝绿空间的重要类型之一,开展湖泊公园生态系统文化服务感知量化研究,对保护生态环境和提升游憩空间质量具有重要意义。以武汉市8个典型湖泊公园为研究对象,爬取公园网络评论数据,利用LDA主题模型挖掘潜在主题,结合社会网络分析法和情感分析模型,并对比问卷调查结果,探讨湖泊公园生态系统文化服务感知差异。结果表明:湖泊公园生态系统文化服务公众感知维度有休闲娱乐、审美体验、运动健康、社交互动、历史文化和科普教育;主导服务类型是休闲娱乐和审美体验,而科普教育是最不易被感知的;公园可达性、周边文化建设、园内基础设施及自身特色是影响感知频率和满意度的主要因素;不同年龄段人群的使用需求和活动类型差异对感知满意度有一定影响。因此,未来湖泊公园的建设可在科普主题活动举办、特色湖泊文化景观、公园配套服务设施、生态环境治理等方面进一步完善,并关注多年龄段人群需求,从而提升公园服务品质。 展开更多
关键词 风景园林 生态系统文化服务 公众感知 LDA主题模型 情感分析 湖泊公园
在线阅读 下载PDF
多维视角下新一代人工智能技术的公众感知研究 被引量:7
5
作者 聂思言 杨江华 《情报杂志》 CSSCI 北大核心 2024年第9期130-138,共9页
[研究目的]社交媒体评论是分析研判公众对新技术应用态度感知的重要对象,为突破传统文本主题挖掘技术的随机性弊端以及情感分析技术的单一性限制,提升文本数据量化分析的精准性以及实现更佳的可视化效果,亟需构建新的主题模型方法与情... [研究目的]社交媒体评论是分析研判公众对新技术应用态度感知的重要对象,为突破传统文本主题挖掘技术的随机性弊端以及情感分析技术的单一性限制,提升文本数据量化分析的精准性以及实现更佳的可视化效果,亟需构建新的主题模型方法与情感分析手段。[研究方法]通过建立结构性融合的深度学习模型——BERT-LDA模型,以ChatGPT微博评论文本为研究对象,利用BERT和LDA分别提取文本的复杂语义信息和关键主题,实现了对深度隐藏主题特征的挖掘,并基于BERT情感分析,从整体、主题和态度多维度视角设计了情感演化的可视化分析。[研究结论]研究表明,BERT-LDA模型能够高效处理大规模、短文本、非结构的社交媒体评论数据,成功识别出公众对ChatGPT在就业教育、未来发展、产品开发、技术变革等不同领域带来影响的态度差异;与传统主题识别模型(LDA、TF-IDF、BERT)相比,BERT-LDA模型在主题识别效果和泛化能力上表现更优,尤其体现在对关键主题和重要词汇的精准挖掘能力上;公众对ChatGPT的认知态度并不统一,表现出赞誉与质疑并存的复杂情绪。 展开更多
关键词 人工智能 ChatGPT 微博 评论文本 主题挖掘 情感分析 公众感知 BERT-LDA模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部