期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
基于动态图学习与注意力机制的多变量时间序列预测
1
作者 洪燚 申时凯 +4 位作者 佘玉梅 杨斌 代飞 王鉴潇 张力逸 《计算机科学》 北大核心 2025年第S1期680-687,共8页
多变量时间序列(MTS)预测因变量间复杂的时序依赖和动态相关性而具有挑战性。现有方法大多从单一维度考虑相关影响因素,而未充分考虑多源数据和特征随时间变化的复杂性,这限制了对复杂系统中动态依赖关系的真实反映。针对上述问题,提出... 多变量时间序列(MTS)预测因变量间复杂的时序依赖和动态相关性而具有挑战性。现有方法大多从单一维度考虑相关影响因素,而未充分考虑多源数据和特征随时间变化的复杂性,这限制了对复杂系统中动态依赖关系的真实反映。针对上述问题,提出了一种基于动态图神经网络(DGNN)的动态关系学习网络(DRLNet)。首先,通过动态更新图邻接矩阵来自适应地建模变量间随时间变化的相关性;然后,设计了一种注意力机制模块,聚焦于重要节点的连接及其随时间的演变;最后,通过评估这些节点与当前时间步的相关程度,引入门控机制选择性地结合历史依赖图。在3个多变量时间序列数据集上的实验结果表明,相较于目前主流的基线方法,DRLNet在预测准确度和稳定性方面表现更优异,能更好地捕捉时序数据中的重要模式和变化,实现多变量时间序列预测。 展开更多
关键词 多变量时间序列预测 时序依赖 注意力机制 动态更新邻接矩阵 门控机制
在线阅读 下载PDF
基于图增强和注意力机制的时间序列不确定性预测
2
作者 门超杰 赵静 张楠 《华东师范大学学报(自然科学版)》 北大核心 2025年第1期82-96,共15页
为提升对未来事件的预判能力并有效应对不确定性,提出了一种基于图增强和注意力机制的网络架构,用于多元时间序列的不确定性预测.通过引入隐含式图结构并结合图神经网络技术,捕捉各序列间相互依赖关系,从而建模时间序列之间的相互影响;... 为提升对未来事件的预判能力并有效应对不确定性,提出了一种基于图增强和注意力机制的网络架构,用于多元时间序列的不确定性预测.通过引入隐含式图结构并结合图神经网络技术,捕捉各序列间相互依赖关系,从而建模时间序列之间的相互影响;运用注意力机制捕捉同一序列内的时序变化模式,以建模时间序列的动态演变规律;采用蒙特卡洛随机失活(Monte Carlo dropout)方法近似模型参数,并将预测序列建模为随机分布,以实现精确的时间序列不确定性预测.实验证明,该方法在保持较高预测精度的同时,还能进行可靠的不确定性估计,可以为决策任务提供置信度信息. 展开更多
关键词 不确定性 增强 时间序列 注意力机制
在线阅读 下载PDF
基于Inception-BiGRU和注意力机制的频谱感知方法研究
3
作者 殷晓虎 张安熠 +1 位作者 张珂珂 田冲 《电子测量技术》 北大核心 2025年第6期90-98,共9页
频谱感知是缓解频谱资源短缺的关键技术之一,其中智能频谱感知已成为当前研究的热点方向。针对现有频谱感知方法对信号特征提取不充分以及在低信噪比下频谱感知效果不佳的问题,提出一种由Inception模块、双向门控循环单元、时间注意力... 频谱感知是缓解频谱资源短缺的关键技术之一,其中智能频谱感知已成为当前研究的热点方向。针对现有频谱感知方法对信号特征提取不充分以及在低信噪比下频谱感知效果不佳的问题,提出一种由Inception模块、双向门控循环单元、时间注意力机制和全连接层网络组成的频谱感知混合模型。首先,Inception模块对接收到的I/Q信号进行多尺度空间特征的提取;然后,采用双向门控循环单元获取信号的时间序列特征,并通过时间注意力机制强化重要时序特征;最后,全连接层网络将提取到的特征映射到频谱状态的分类空间完成分类识别。实验结果表明,本文方法与多种现有频谱感知方法相比显著提升了感知性能,模型的整体检测准确率达到84.55%,当信噪比为-20 dB时,该方法的感知误差为24%;且对多种调制类型的无线电信号具有较好的适应性。所提方法无需依赖任何先验信息,在低信噪比和复杂无线电环境下展现出较强的鲁棒性,实现了感知性能与模型复杂度的有效平衡,为智能频谱感知提供了一种新的解决方案。 展开更多
关键词 频谱感知 深度学习 Inception模块 双向门控循环单元 时间注意力机制
在线阅读 下载PDF
融合动态卷积和注意力机制的多层感知机语音情感识别
4
作者 张雨萌 张欣 +1 位作者 高谋 赵虎林 《计算机科学与探索》 北大核心 2025年第4期1065-1075,共11页
语音情感识别技术通过分析语音信号推断说话者情绪,增强人机交互的自然性和智能性。然而,现有模型往往忽视时频语义信息,影响识别准确性。为此,提出了一种融合动态卷积与注意力机制的多层感知机模型,显著提高了情感识别的准确度及信息... 语音情感识别技术通过分析语音信号推断说话者情绪,增强人机交互的自然性和智能性。然而,现有模型往往忽视时频语义信息,影响识别准确性。为此,提出了一种融合动态卷积与注意力机制的多层感知机模型,显著提高了情感识别的准确度及信息利用效率。将输入的语音信号转化为梅尔频谱图,捕捉信号细节变化,更贴切地反映人类对声音的感知,为后续特征提取奠定了基础。通过词元化处理将梅尔频谱图转化为词元,降低了数据的复杂性。借助动态卷积与分离注意力机制高效提取关键的时频特征。一方面,动态卷积能够适应不同时间和频率上的尺度变化,优化了特征捕捉效率;另一方面,分离注意力机制增强了模型对关键信息的聚焦能力,有效提升了模型对特征的表达能力。结合动态卷积与分离注意力机制的优势,该模型能够更加充分地提取关键声学特征,从而实现了更高效、更精准的情感识别。在RAVDESS、EmoDB和CASIA三个语音情感数据库上的测试显示,模型识别准确率显著优于现有技术,达到86.11%、95.33%和82.92%。这验证了模型在复杂情感识别任务的高效性和准确性,以及动态卷积和注意力机制的有效性。 展开更多
关键词 语音情感识别 梅尔频谱 多层感知 动态卷积 注意力机制
在线阅读 下载PDF
基于知识图谱与邻域感知注意力机制的推荐算法研究
5
作者 陈珊珊 姚苏滨 《计算机科学》 CSCD 北大核心 2024年第8期313-323,共11页
为解决传统推荐算法在面对数据稀疏的推荐任务时产生的冷启动问题,本研究将知识图谱引入推荐算法,结合一种新的邻域感知注意力机制代替传统图注意力机制来挖掘实体间的高阶连通信息,提出了基于知识图谱和邻域感知注意力机制的推荐模型KG... 为解决传统推荐算法在面对数据稀疏的推荐任务时产生的冷启动问题,本研究将知识图谱引入推荐算法,结合一种新的邻域感知注意力机制代替传统图注意力机制来挖掘实体间的高阶连通信息,提出了基于知识图谱和邻域感知注意力机制的推荐模型KGNPAN。得益于知识图谱可使推荐具有精准、多样和可解释的特点,该模型能够很好地缓解数据稀疏与冷启动问题。首先利用基于自对抗负采样的图嵌入方法RotatE对原有物品和用户表征的语义信息进行扩充,将实体和关系向量映射成低维嵌入向量;其次,根据协同邻居的不同类型分别应用邻域感知注意力机制聚合邻居节点信息,丰富目标节点语义,并以卷积形式递归挖掘高阶连通信息;最后对用户与项目向量应用内积操作计算交互概率,得到推荐结果。在Amazon-book和Last-FM两个公共基准数据集上进行实验,结果表明,在与CKE,BPRMF,RippleNet,KGAT,KGCN和CAKN 6个基准模型的对比中,KGNPAN相较于基准模型中结果最优的CAKN模型,在召回率(Recall)上分别提升了1.30%和1.37%,在归一化折损累计增益上(NDCG)分别提升了1.26%和1.14%,充分验证了其有效性和可解释性。 展开更多
关键词 推荐算法 邻域感知注意力机制 知识 神经网络 冷启动
在线阅读 下载PDF
基于多维注意力机制的高速公路交通流量预测方法
6
作者 虞安军 励英迪 +5 位作者 杨哲懿 付崇宇 童蔚苹 余佳 刘云海 刘志远 《汽车安全与节能学报》 北大核心 2025年第3期463-469,共7页
为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(T... 为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(TCN)提取交通流空间和时间维度的特征,结合多维注意力机制挖掘时空数据中的关键信息,同时引入多任务学习架构,通过基于同方差不确定性的损失函数来平衡不同任务共同学习,以提高模型的泛化能力和鲁棒性。结果表明:该模型在测试集上的均方根误差(RMSE)和平均绝对误差(MAE)分别为7.467和5.133,相较基准模型有更好的预测精度;提出的该交通流量预测方法可有效地挖掘交通流的时空特性,描述真实交通运行状态,对高速公路交通流量做出精准预测。 展开更多
关键词 交通流预测 神经网络(GNN) 时间卷积网络(TCN) 多维注意力机制
在线阅读 下载PDF
基于混合注意力和类型感知的方面级情感分析
7
作者 王红霞 张佳慧 聂振凯 《高技术通讯》 北大核心 2025年第3期262-272,共11页
为解决方面级情感分析(aspect-based sentiment analysis,ABSA)任务中,未充分利用依赖树中的句法信息及语义信息提取不充分等问题,提出了基于混合注意力和类型感知的双图卷积网络模型。首先,设计了混合注意力模块,用于更全面地提取句子... 为解决方面级情感分析(aspect-based sentiment analysis,ABSA)任务中,未充分利用依赖树中的句法信息及语义信息提取不充分等问题,提出了基于混合注意力和类型感知的双图卷积网络模型。首先,设计了混合注意力模块,用于更全面地提取句子的语义信息,该模块采用方面感知注意力机制,学习与方面项相关的局部语义特征,再结合自注意力机制学习句子的全局语义特征。其次,为了更充分地利用依赖树中的句法信息,设计了利用依赖关系类型构建类型感知图模块,并采用注意力机制区分不同依赖类型的重要程度,重构带有权重的类型感知图。最后,通过图神经网络来挖掘更深层次的语义和句法信息。在Restaurant14、Laptop14和Twitter公开数据集上进行实验,实验结果表明,与基准模型相比,本文提出的模型具有更好的分类效果。 展开更多
关键词 方面级情感分析 注意力机制 方面感知注意力 类型感知 神经网络
在线阅读 下载PDF
基于动态增强图注意力网络的突发事件预测
8
作者 仲兆满 崔心如 +2 位作者 张渝 吕慧慧 樊继冬 《南京大学学报(自然科学版)》 北大核心 2025年第1期94-104,共11页
图神经网络在处理事件图的节点特征时会出现过平滑性的问题,导致较难获取全面的事件特征;同时,由于事件发展是动态的,网络在处理过程中会忽略短时间切片之间的数据变化,难以捕捉事件的全局时间特征.针对以上问题,提出基于动态增强图注... 图神经网络在处理事件图的节点特征时会出现过平滑性的问题,导致较难获取全面的事件特征;同时,由于事件发展是动态的,网络在处理过程中会忽略短时间切片之间的数据变化,难以捕捉事件的全局时间特征.针对以上问题,提出基于动态增强图注意力网络的突发事件预测模型(Dynamic Enhanced Graph Attention Network,DEGAT),通过构建使用高斯扰动增强的图注意力网络(Enhanced Graph Attention Network,EGAT)来获取历史事件图全面的事件特征.将初始事件向量和EGAT输出的事件向量分别输入线性层进行融合,得到时间特征,再将多个不同历史时间特征序列输入多头注意力机制与LSTM相结合的时间编码层,获得全局时间特征.最后,将全局时间特征输入EGAT,经过非线性变换后输出预测结果.在四个社会突发事件数据集上的实验结果表明,提出的模型与DynamicGCN的方法相比,准确率和精确率分别提高了3.88%和4.12%. 展开更多
关键词 事件预测 注意力网络 特征增强 时间序列 多头注意力机制
在线阅读 下载PDF
时间感知的双塔型自注意力序列推荐模型 被引量:5
9
作者 余文婷 吴云 《计算机科学与探索》 CSCD 北大核心 2024年第1期175-188,共14页
用户的偏好具有聚合性和漂移性。现有推荐算法在序列建模框架中融合了交互时间相关性的建模,取得了很大的性能改善,但它们在建模时仅考虑了交互的时间间隔,使得它们在捕捉用户偏好的时间动态方面存在局限性。首先,提出了一种新的时间感... 用户的偏好具有聚合性和漂移性。现有推荐算法在序列建模框架中融合了交互时间相关性的建模,取得了很大的性能改善,但它们在建模时仅考虑了交互的时间间隔,使得它们在捕捉用户偏好的时间动态方面存在局限性。首先,提出了一种新的时间感知的位置嵌入方法,将时间信息与位置嵌入相结合,帮助模型学习时间层面的项目相关性。随后,在时间感知位置嵌入基础上,提出了时间感知的双塔自注意力序列推荐模型(TiDSA)。TiDSA包含项目级和特征级的自注意力模块,分别从项目和特征两个角度对用户偏好随时间变化的过程进行分析,实现了对时间、项目和特征的统一建模,并且在特征级自注意力模块,设计了多维度的自注意力权重计算方式,从特征维度、项目维度和项目与特征交叉维度充分学习特征之间的相关性。最后,TiDSA将项目级与特征级的信息相融合得到最终的用户偏好表示,并根据该表示为用户提供可靠的推荐结果。四个真实推荐数据集的实验结果表明,TiDSA的性能优于许多先进的基线模型。 展开更多
关键词 时间感知序列推荐 位置嵌入 特征级自注意力机制 双塔自注意力网络
在线阅读 下载PDF
融合双注意力机制的GNN多维时间序列预测 被引量:1
10
作者 范航舟 梅红岩 +2 位作者 赵勤 张兴 程耐 《智能系统学报》 CSCD 北大核心 2024年第5期1277-1286,共10页
针对现有多维时间序列数据(multivariate time series,MTS)预测中变量间依赖关系捕获能力不足和时间序列数据多通道信息利用不充分的问题,提出一种融合双注意力机制的多维时间序列预测模型(feature fusion and dual attention mechanism... 针对现有多维时间序列数据(multivariate time series,MTS)预测中变量间依赖关系捕获能力不足和时间序列数据多通道信息利用不充分的问题,提出一种融合双注意力机制的多维时间序列预测模型(feature fusion and dual attention mechanism based GNN,FFDA-GNN)。该模型将图神经网络与空间注意力机制融合,用于增强多变量之间依赖关系捕获能力;利用并行的多层膨胀卷积和通道注意力机制,对时间序列数据进行多通道的特征提取,实现对时间序列数据多通道信息的充分利用,从而提升预测性能。在经济、电力、交通3个领域数据集上与基准模型进行对比实验,该模型预测精度优于其他基准方法,有良好的可行性。 展开更多
关键词 多维时序预测 神经网络 注意力机制 特征融合 时间卷积网络 深度学习 卷积神经网络 时空特征
在线阅读 下载PDF
增强局部注意力的时间序列分类方法 被引量:1
11
作者 李克文 柯翠虹 +2 位作者 张敏 王晓晖 耿文亮 《计算机工程与应用》 CSCD 北大核心 2024年第1期189-197,共9页
现有时间序列分类方法普遍基于一种循环网络结构解决时间序列点值耦合问题,无法并行计算,导致计算资源浪费,因此提出一种增强局部注意力的时间序列分类方法。该方法拟合混合距离信息以增加时间序列位置感知能力,将混合距离信息融入自注... 现有时间序列分类方法普遍基于一种循环网络结构解决时间序列点值耦合问题,无法并行计算,导致计算资源浪费,因此提出一种增强局部注意力的时间序列分类方法。该方法拟合混合距离信息以增加时间序列位置感知能力,将混合距离信息融入自注意矩阵计算中,从而扩展自注意力机制;构造多尺度卷积注意力获取多尺度局部前向信息,以解决标准自注意力机制基于点值计算存在注意力混淆的问题;使用改进后的自注意力机制构造时序自注意分类模块,并行计算处理时间序列分类任务。实验结果表明,与现有时间序列分类方法相比,基于局部注意力增强的时间序列分类方法能够加速收敛,有效提高时序序列分类效果。 展开更多
关键词 时间序列分类 注意力机制 位置感知 多尺度卷积
在线阅读 下载PDF
结合谓词感知与图注意力机制的链接预测方法 被引量:2
12
作者 马力 姚伟凡 《计算机应用研究》 CSCD 北大核心 2021年第7期2091-2095,2102,共6页
知识图谱补全旨在预测三元组中缺失的部分使知识图谱趋于完整。针对基于神经网络等模型的链接预测方法忽略了实体间的关联信息,导致模型不能覆盖三元组周围局部邻域中固有的隐藏信息,提出图注意力机制与谓词感知结合的方法。首先,利用... 知识图谱补全旨在预测三元组中缺失的部分使知识图谱趋于完整。针对基于神经网络等模型的链接预测方法忽略了实体间的关联信息,导致模型不能覆盖三元组周围局部邻域中固有的隐藏信息,提出图注意力机制与谓词感知结合的方法。首先,利用图注意力机制定义了一个关系嵌入矩阵,描述任意给定实体邻域内实体间的关系;其次,引入谓词增强实体间语义理解程度,构造了基于谓词嵌入向量的注意力值计算公式,以便有效地度量实体间语义联系的强度;此外,利用实体邻居间的边关系预测多跳实体间的直接关系以补全知识图谱。在数据集WN18RR、Kinship、FB15K的实验结果表明了该方法能有效提高三元组的预测精度。 展开更多
关键词 知识谱补全 注意力机制 谓词感知 链接预测 实体预测
在线阅读 下载PDF
基于自注意与图神经网络的弹体侵彻靶板材质检测方法研究
13
作者 付世杰 邵伟平 郝永平 《弹箭与制导学报》 北大核心 2025年第3期386-391,共6页
针对当前智能化现代战争中,炮弹实现精准打击及对射击目标判断的复杂性,提出基于一种图神经网络和自注意力机制融合的多元时间序列数据检测模型,利用弹体内部多元传感器的实时数据对弹体击中目标的材质进行分类检测,从而配合其他检测方... 针对当前智能化现代战争中,炮弹实现精准打击及对射击目标判断的复杂性,提出基于一种图神经网络和自注意力机制融合的多元时间序列数据检测模型,利用弹体内部多元传感器的实时数据对弹体击中目标的材质进行分类检测,从而配合其他检测方法实现对炮弹是否击中目标做出精准判断。通过引入图模型,自注意力机制在传感器维度进行消息传递,提高模型对不同传感器数据变化的感知能力,并更加注重其有效信息;针对不规则数据采样和多元时间序列的复杂性,利用时间信息关系特征,建立时间自注意力机制网络对复杂时间序列的建模方法。实验结果表明,相比目前主流模型,所提算法实现了更高的精度,对射击目标靶板的材质识别准确率高达90%;该研究工作为实现对目标打击识别智能化检测提供了依据参考。 展开更多
关键词 神经网络 时间序列 注意力机制 LS-DYNA 分类
在线阅读 下载PDF
基于动态关联图注意力网络的虚拟电厂居民短期负荷预测 被引量:1
14
作者 张峻凯 胡旭光 +3 位作者 刘要博 许晴 马大中 孙秋野 《电力系统自动化》 EI CSCD 北大核心 2024年第21期120-128,共9页
居民短期负荷预测能够为虚拟电厂提供实时、灵活的电力需求信息,有助于虚拟电厂实现能源高效利用与优化电力市场交易。由于居民负荷相关性的日益凸显,传统预测方法仅基于单个居民历史负荷进行时序预测,无法满足规模化虚拟电厂对居民负... 居民短期负荷预测能够为虚拟电厂提供实时、灵活的电力需求信息,有助于虚拟电厂实现能源高效利用与优化电力市场交易。由于居民负荷相关性的日益凸显,传统预测方法仅基于单个居民历史负荷进行时序预测,无法满足规模化虚拟电厂对居民负荷关联性的综合需求。基于此,文中提出一种基于动态关联图注意力网络的虚拟电厂居民短期负荷预测方法。首先,提出了混合相关性分析方法来刻画居民负荷之间的线性和非线性关系,并进一步提出了权重剪枝阈值机制得到居民负荷混合相关性矩阵;然后,基于该矩阵构建动态关联图结构,进而提出时间图注意力网络机制以深入学习居民负荷的时空关联特性,并实现居民短期负荷预测目标;最后,以某地区实际居民负荷数据为例,验证了所提方法的有效性。 展开更多
关键词 虚拟电厂 短期负荷预测 混合相关性 动态关联 神经网络 时间注意力机制
在线阅读 下载PDF
自注意力增强的动态个性化多行为推荐模型
15
作者 杨栩 曹琼 +1 位作者 黄贤英 陈毓哲 《计算机工程与设计》 北大核心 2025年第4期1134-1140,共7页
为解决实例级建模中无法有效捕获用户个性化偏好和时序信息以及没有考虑用户对不同行为的差异性,提出一种融合时间元知识和注意力机制融合交互图的多行为推荐模型(MB-TMSCI)。在实例级多行为建模中纳入元学习范式,通过引入元知识个性化... 为解决实例级建模中无法有效捕获用户个性化偏好和时序信息以及没有考虑用户对不同行为的差异性,提出一种融合时间元知识和注意力机制融合交互图的多行为推荐模型(MB-TMSCI)。在实例级多行为建模中纳入元学习范式,通过引入元知识个性化表示用户和物品嵌入;通过对交互时间编码考虑动态特征;利用多头注意力机制融合高阶图集且使用自注意力机制区分融合不同类型的高阶图集。在3个公开数据集上进行大量实验,验证了所提模型的推荐效果优于基准模型。 展开更多
关键词 多行为推荐 时间编码 元知识 高阶交互 注意力机制 神经网络 显式建模
在线阅读 下载PDF
基于自注意力和位置感知图模型的会话推荐
16
作者 孙克雷 周志刚 《计算机工程与设计》 北大核心 2023年第12期3722-3728,共7页
为解决现有的会话模型方案都只基于局部会话信息而没有充分考虑全局会话信息的问题,提出一种基于自注意力和位置感知图模型的会话推荐。利用图神经网络构建会话图,利用位置感知注意力建模会话图的一阶邻居信息,引入反向位置嵌入赋予不... 为解决现有的会话模型方案都只基于局部会话信息而没有充分考虑全局会话信息的问题,提出一种基于自注意力和位置感知图模型的会话推荐。利用图神经网络构建会话图,利用位置感知注意力建模会话图的一阶邻居信息,引入反向位置嵌入赋予不同项目不同的权重,通过软注意机制获得局部会话表示;利用自注意力机制自适应地捕捉会话的全局依赖;将全局会话与局部会话相结合生成最终会话表示。对3个真实数据集进行实验,模型在3个数据集上P@20分别提升了1.2%、4.3%和12.9%,MRR@20分别提升了2.3%、5.4%和14.3%,验证了所提模型的有效性。 展开更多
关键词 会话推荐 神经网络 注意力机制 反向位置嵌入 注意力机制 邻居信息 位置感知模型
在线阅读 下载PDF
基于时空图网络和Informer的多元时间序列异常检测
17
作者 杨晨龙 孙晔 刘晓悦 《现代电子技术》 北大核心 2025年第15期83-90,共8页
对多元时间序列进行有效的异常检测可以保证物联网系统的安全,现有方法通常从附近的时间点和邻近节点学习局部时空表示,以重构或预测传感器数据。针对局部表征难以模拟复杂的非线性拓扑关系和动态时间模式导致的误报和异常遗漏等问题,... 对多元时间序列进行有效的异常检测可以保证物联网系统的安全,现有方法通常从附近的时间点和邻近节点学习局部时空表示,以重构或预测传感器数据。针对局部表征难以模拟复杂的非线性拓扑关系和动态时间模式导致的误报和异常遗漏等问题,文中提出一种多元时间序列异常检测模型STGIN。首先,将时间卷积网络嵌入多尺度残差卷积网络中,捕捉短期粒度级别的时间特征,并引入门控机制过滤无关信息;然后,构建空间图结构,利用图注意力网络有效地学习复杂的时空依赖关系;最后,联合优化预测和重构模块,结合变分自编码器和Informer进行长时间序列重构,利用提取到的全局和局部时空关联检测正常数据样本中的异常。在MSL、SMAP和SWaT公开数据集上进行实验,所得F1分数分别为0.9623、0.9425和0.8709,均优于基准模型,验证了所提方法的有效性和可行性。 展开更多
关键词 多元时间序列 异常检测 时间卷积网络 门控机制 注意力网络 INFORMER
在线阅读 下载PDF
面向会话的需求感知注意图神经网络推荐模型
18
作者 郑小丽 王巍 +1 位作者 杜雨晅 张闯 《计算机工程与应用》 CSCD 北大核心 2024年第7期128-140,共13页
针对现有基于图的会话推荐方法忽略了反馈数据中由于用户行为不确定性引起的噪声影响,存在无法准确和有效地捕捉用户偏好的问题,提出一种面向会话的需求感知注意图神经网络推荐模型(DAAGNNSR)。将具有时序性的会话数据构建为图,通过引... 针对现有基于图的会话推荐方法忽略了反馈数据中由于用户行为不确定性引起的噪声影响,存在无法准确和有效地捕捉用户偏好的问题,提出一种面向会话的需求感知注意图神经网络推荐模型(DAAGNNSR)。将具有时序性的会话数据构建为图,通过引入图神经网络学习图上节点嵌入表示;将提取的项目特征使用需求感知聚合器线性聚合为用户潜在需求矩阵,以自动削弱噪声干扰,同时用低秩多头注意力网络将该矩阵与全部项目特征进行逐项兴趣交互生成需求增强的项目表征;联合独立位置编码进一步分析项目间顺序关联,并且将生成的独立位置嵌入与项目表征进行线性融合;经过预测层生成推荐列表。将所提模型在Diginetica、Tmall和Nowplaying三个公共数据集上进行训练和测试,实验结果表明,该模型的推荐精度在各指标上均优于其他基线模型,与基于图上下文自注意力机制模型(GCSAN)相比,Diginetica上NDCG@10提高了5.6%,Tmall上Recall@10提高了6.4%;与基于图神经网络的SRGNN相比,Tmall上Precision@10提高了5.0%,推荐性能显著提升。 展开更多
关键词 会话推荐 神经网络 低秩多头注意力机制 需求感知聚合器 独立位置编码
在线阅读 下载PDF
基于图注意力网络与双阶注意力机制的径流预报模型 被引量:8
19
作者 胡鹤轩 隋华超 +3 位作者 胡强 张晔 胡震云 马能武 《计算机应用》 CSCD 北大核心 2022年第5期1607-1615,共9页
为了提高流域径流量预报的准确率,考虑数据驱动水文模型缺乏模型透明度与物理可解释性的问题,提出了一种使用图注意力网络与基于长短期记忆网络(LSTM)的双阶注意力机制(GAT-DALSTM)模型来进行径流预报。首先,以流域站点的水文资料为基础... 为了提高流域径流量预报的准确率,考虑数据驱动水文模型缺乏模型透明度与物理可解释性的问题,提出了一种使用图注意力网络与基于长短期记忆网络(LSTM)的双阶注意力机制(GAT-DALSTM)模型来进行径流预报。首先,以流域站点的水文资料为基础,引入图神经网络提取流域站点的拓扑结构并生成特征向量;其次,针对水文时间序列数据的特点,建立了基于双阶注意力机制的径流预报模型对流域径流量进行预测,并通过基于注意力系数热点图的模型评估方法验证所提模型的可靠性与透明度。在屯溪流域数据集上,将所提模型与图卷积神经网络(GCN)和长短期记忆网络(LSTM)在各个预测步长下进行比较,实验结果表明,所提模型的纳什效率系数分别平均提高了3.7%和4.9%,验证了GAT-DALSTM径流预报模型的准确性。从水文与应用角度对注意力系数热点图进行分析,验证了模型的可靠性与实用性。所提模型能为提高流域径流量的预测精度与模型透明度提供技术支撑。 展开更多
关键词 神经网络 注意力机制 编码器-解码器 长短期记忆网络 时间序列预测 水文预报
在线阅读 下载PDF
基于时空注意力机制的多元时间序列异常检测 被引量:6
20
作者 梁李芳 关东海 +1 位作者 张吉 袁伟伟 《计算机科学》 CSCD 北大核心 2023年第S02期438-445,共8页
物联网系统被广泛应用于各种基础设施,系统中涉及许多相互连接的传感器,这些传感器产生大量的多元时间序列数据。由于物联网系统容易遭受网络攻击,多元时间序列异常检测方法被用于及时监测系统中发生的异常,这对于保障系统安全至关重要... 物联网系统被广泛应用于各种基础设施,系统中涉及许多相互连接的传感器,这些传感器产生大量的多元时间序列数据。由于物联网系统容易遭受网络攻击,多元时间序列异常检测方法被用于及时监测系统中发生的异常,这对于保障系统安全至关重要。然而,由于高维传感器数据关系复杂,现有的大多数异常检测方法难以明确学习多元时间序列的相关性,导致异常检测的准确率较低。因此,提出一种基于时空注意力机制的多元时间序列异常检测方法(STA)。首先,以图形结构的形式学习传感器间的关系,再使用多跳图注意力网络为图中每个传感器节点的多跳邻居节点分配不同的注意力权重,用于捕捉序列的空间相关性。其次,采用基于长短时间记忆网络的时间注意力机制自适应地选择相应的时间序列,用于学习序列的时间相关性。在4个真实世界传感器数据集上的实验结果表明,STA可以比基线方法更准确地检验时间序列中的异常,其F 1分数分别优于最佳基线31.03%,14.29%,15.91%和21.74%。此外,消融实验和灵敏度分析验证了模型中的关键组件的有效性。总的来说,STA可以有效捕捉多元时间序列中的空间和时间相关性,提高模型的异常检测性能。 展开更多
关键词 多元时间序列 注意力机制 注意力网络 长短时间记忆网络 时间相关性 空间相关性 异常检测
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部