为实现环境激励下复杂钢结构的损伤预警,提出一种基于粒子群优化(particle swarm optimization,简称PSO)的支持向量回归(support vector regression,简称SVR)-时间序列(auto-regressive and moving average model,简称ARMA)组合模型用...为实现环境激励下复杂钢结构的损伤预警,提出一种基于粒子群优化(particle swarm optimization,简称PSO)的支持向量回归(support vector regression,简称SVR)-时间序列(auto-regressive and moving average model,简称ARMA)组合模型用于频率预测,并结合均值控制图法将其用于复杂钢结构的损伤预警中。所提出频率预测模型的准确性和有效性采用潍坊市白浪河摩天轮钢结构实测数据进行验证。验证结果表明:与基本SVR模型、SVR-ARMA模型和PSO-SVR模型相比,所提模型具有更高的泛化能力和预测精度;在白浪河摩天轮钢结构的损伤预警中,基于粒子群优化的SVR-ARMA组合模型可检出由损伤造成模态频率轻微的异常变化,具有较强的损伤敏感性。研究成果可为环境激励下复杂钢结构的损伤预警提供参考。展开更多
In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using concept...In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using conceptions of the relative error,the change tendency of the forecasted object,gray basic weight and adaptive control coefficient on the basis of the method of fuzzy variable weight.Based on Visual Basic 6.0 platform,a fuzzy adaptive variable weight combined forecasting and management system was developed.The application results reveal that the forecasting precisions from the new nonlinear combined forecasting model are higher than those of other single combined forecasting models and the combined forecasting and management system is very powerful tool for the required decision in complex industry system.展开更多
文摘为实现环境激励下复杂钢结构的损伤预警,提出一种基于粒子群优化(particle swarm optimization,简称PSO)的支持向量回归(support vector regression,简称SVR)-时间序列(auto-regressive and moving average model,简称ARMA)组合模型用于频率预测,并结合均值控制图法将其用于复杂钢结构的损伤预警中。所提出频率预测模型的准确性和有效性采用潍坊市白浪河摩天轮钢结构实测数据进行验证。验证结果表明:与基本SVR模型、SVR-ARMA模型和PSO-SVR模型相比,所提模型具有更高的泛化能力和预测精度;在白浪河摩天轮钢结构的损伤预警中,基于粒子群优化的SVR-ARMA组合模型可检出由损伤造成模态频率轻微的异常变化,具有较强的损伤敏感性。研究成果可为环境激励下复杂钢结构的损伤预警提供参考。
基金Project(08SK1002) supported by the Major Project of Science and Technology Department of Hunan Province,China
文摘In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using conceptions of the relative error,the change tendency of the forecasted object,gray basic weight and adaptive control coefficient on the basis of the method of fuzzy variable weight.Based on Visual Basic 6.0 platform,a fuzzy adaptive variable weight combined forecasting and management system was developed.The application results reveal that the forecasting precisions from the new nonlinear combined forecasting model are higher than those of other single combined forecasting models and the combined forecasting and management system is very powerful tool for the required decision in complex industry system.