The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c...The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.展开更多
The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 H...The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 Hz often exhibit upward warping in data,making geophysical inversion and interpretation challenging.The cumulative error of the crystal oscillator in signal transmission and acquisition contributes to an upturned apparent resistivity curve.To address this,a high-frequency information extraction method is proposed based on time-domain signal reconstruction,which helps to record a complete current data sequence;moreover,it helps estimate the crystal oscillator error for the transmitted signal.Considering the recorded error,a received signal was corrected using a set of reconstruction algorithms.After processing,the high-frequency component of the wide-field electromagnetic data was not upturned,while accurate high-frequency information was extracted from the signal.Therefore,the proposed method helped effectively extract high-frequency components of all wide-field electromagnetic data.展开更多
Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter wit...Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter with multiple structure elements was designed to process measured displacement time series with adaptive multi-scale decoupling.Whereafter,functional-coefficient auto regressive (FAR) models were established for the random subsequences.Meanwhile,the trend subsequence was processed by least squares support vector machine (LSSVM) algorithm.Finally,extrapolation results obtained were superposed to get the ultimate prediction result.Case study and comparative analysis demonstrate that the presented method can optimize training samples and show a good nonlinear predicting performance with low risk of choosing wrong algorithms.Mean absolute percentage error (MAPE) and root mean square error (RMSE) of the MM-FAR&LSSVM predicting results are as low as 1.670% and 0.172 mm,respectively,which means that the prediction accuracy are improved significantly.展开更多
文摘The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.
基金Project(42004056)supported by the National Natural Science Foundation of ChinaProject(ZR2020QD052)supported by the Natural Science Foundation of Shandong Province,ChinaProject(2019YFC0604902)supported by the National Key Research and Development Program of China。
文摘The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 Hz often exhibit upward warping in data,making geophysical inversion and interpretation challenging.The cumulative error of the crystal oscillator in signal transmission and acquisition contributes to an upturned apparent resistivity curve.To address this,a high-frequency information extraction method is proposed based on time-domain signal reconstruction,which helps to record a complete current data sequence;moreover,it helps estimate the crystal oscillator error for the transmitted signal.Considering the recorded error,a received signal was corrected using a set of reconstruction algorithms.After processing,the high-frequency component of the wide-field electromagnetic data was not upturned,while accurate high-frequency information was extracted from the signal.Therefore,the proposed method helped effectively extract high-frequency components of all wide-field electromagnetic data.
基金Project(20090162120084)supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject(08JJ4014)supported by the Natural Science Foundation of Hunan Province,China
文摘Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter with multiple structure elements was designed to process measured displacement time series with adaptive multi-scale decoupling.Whereafter,functional-coefficient auto regressive (FAR) models were established for the random subsequences.Meanwhile,the trend subsequence was processed by least squares support vector machine (LSSVM) algorithm.Finally,extrapolation results obtained were superposed to get the ultimate prediction result.Case study and comparative analysis demonstrate that the presented method can optimize training samples and show a good nonlinear predicting performance with low risk of choosing wrong algorithms.Mean absolute percentage error (MAPE) and root mean square error (RMSE) of the MM-FAR&LSSVM predicting results are as low as 1.670% and 0.172 mm,respectively,which means that the prediction accuracy are improved significantly.