期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于时间差分和局部加权偏最小二乘算法的过程自适应软测量建模 被引量:17
1
作者 袁小锋 葛志强 宋执环 《化工学报》 EI CAS CSCD 北大核心 2016年第3期724-728,共5页
工业过程软测量模型常常因为过程的变量漂移、非线性和时变等问题而使得预测性能下降。因此,时间差分已被应用于解决过程变量漂移问题。但是,时间差分框架下的全局模型往往不能很好地描述过程非线性和时变等特性。为此,提出了一种融合... 工业过程软测量模型常常因为过程的变量漂移、非线性和时变等问题而使得预测性能下降。因此,时间差分已被应用于解决过程变量漂移问题。但是,时间差分框架下的全局模型往往不能很好地描述过程非线性和时变等特性。为此,提出了一种融合时间差分模型和局部加权偏最小二乘算法的自适应软测量建模方法。时间差分模型可以大大减少过程变量漂移的影响,而局部加权偏最小二乘算法作为一种即时学习方法,可以有效解决过程非线性和时变问题。该方法的有效性在数值例子和工业过程实例中得到了有效验证。 展开更多
关键词 时间差模型 局部加权偏最小二乘算法 即时学习 软测量建模 质量预测
在线阅读 下载PDF
选择性集成LTDGPR模型的自适应软测量建模方法 被引量:8
2
作者 熊伟丽 李妍君 《化工学报》 EI CAS CSCD 北大核心 2017年第3期984-991,共8页
随着时间的增加,传统时间差(TD)模型会出现性能显著下降的问题。为了提高TD模型的可靠性和预测精度,同时考虑过程的时滞特征,基于一种选择性集成策略,提出一种局部时间差高斯过程回归(LTDGPR)模型的自适应软测量建模方法。首先,提取出... 随着时间的增加,传统时间差(TD)模型会出现性能显著下降的问题。为了提高TD模型的可靠性和预测精度,同时考虑过程的时滞特征,基于一种选择性集成策略,提出一种局部时间差高斯过程回归(LTDGPR)模型的自适应软测量建模方法。首先,提取出数据库中的时滞动态信息,对建模数据进行重构;然后,采取局部化策略对差分后的重构样本进行统计划分,得到LTDGPR模型集。对于新来的输入样本,选择部分泛化能力强的LTDGPR模型进行集成,估计出含一定时间差的主导变量动态偏移值;最后,基于TD模型思想对当前时刻主导变量值进行在线预测。通过脱丁烷塔过程的数据建模仿真研究,验证了所提方法的有效性和精度。 展开更多
关键词 选择性集成 时间差模型 参数识别 动态建模 化学过程
在线阅读 下载PDF
基于改进变尺度法的超宽带定位新算法 被引量:3
3
作者 郭建广 郑紫微 杨任尔 《计算机应用》 CSCD 北大核心 2014年第12期3395-3399,共5页
针对传统定位算法收敛速度慢的问题,结合超宽带通信具有时间分辨率高的特点,在到达时间差(TDOA)定位模型的基础上,采用基于Armijo步长的变尺度法(DFP)对目标节点进行初始定位,进一步在初始位置处以泰勒级数展开算法得到目标节点的最终位... 针对传统定位算法收敛速度慢的问题,结合超宽带通信具有时间分辨率高的特点,在到达时间差(TDOA)定位模型的基础上,采用基于Armijo步长的变尺度法(DFP)对目标节点进行初始定位,进一步在初始位置处以泰勒级数展开算法得到目标节点的最终位置,实现超宽带(UWB)通信系统精确定位。实验结果表明,采用改进变尺度法的初始坐标修正算法,不仅能够降低定位优化算法对于初始坐标的要求,而且在测量时间准确的前提下,相比传统最速下降法平均定位精度有7倍的改进,整个算法具有好的定位精度和定位效率。 展开更多
关键词 超宽带通信 变尺度法 Armijo步长 到达时间差定位模型
在线阅读 下载PDF
Iterative identification of discrete-time output-error model with time delay 被引量:3
4
作者 CHEN Feng-wei LIU Tao 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期647-654,共8页
The problem of discrete-time model identification of industrial processes with time delay was investigated.An iterative and separable method is proposed to solve this problem,that is,the rational transfer function mod... The problem of discrete-time model identification of industrial processes with time delay was investigated.An iterative and separable method is proposed to solve this problem,that is,the rational transfer function model parameters and time delay are alternately fixed to estimate each other.The instrumental variable technique is applied to guarantee consistent estimation against measurement noise.A noteworthy merit of the proposed method is that it can handle fractional time delay estimation,compared to existing methods commonly assuming that the time delay is an integer multiple of the sampling interval.The identifiability analysis for time delay is addressed and correspondingly,some guidelines are provided for practical implementation of the proposed method.Numerical and experimental examples are presented to illustrate the effectiveness of the proposed method. 展开更多
关键词 system identification output-error model instrumental variable method time delay
在线阅读 下载PDF
Predication of plasma concentration of remifentanil based on Elman neural network 被引量:1
5
作者 汤井田 曹扬 +1 位作者 肖嘉莹 郭曲练 《Journal of Central South University》 SCIE EI CAS 2013年第11期3187-3192,共6页
Due to the nature of ultra-short-acting opioid remifentanil of high time-varying,complex compartment model and low-accuracy of plasma concentration prediction,the traditional estimation method of population pharmacoki... Due to the nature of ultra-short-acting opioid remifentanil of high time-varying,complex compartment model and low-accuracy of plasma concentration prediction,the traditional estimation method of population pharmacokinetics parameters,nonlinear mixed effects model(NONMEM),has the abuses of tedious work and plenty of man-made jamming factors.The Elman feedback neural network was built.The relationships between the patients’plasma concentration of remifentanil and time,patient’age,gender,lean body mass,height,body surface area,sampling time,total dose,and injection rate through network training were obtained to predict the plasma concentration of remifentanil,and after that,it was compared with the results of NONMEM algorithm.In conclusion,the average error of Elman network is 6.34%,while that of NONMEM is 18.99%.The absolute average error of Elman network is 27.07%,while that of NONMEM is 38.09%.The experimental results indicate that Elman neural network could predict the plasma concentration of remifentanil rapidly and stably,with high accuracy and low error.For the characteristics of simple principle and fast computing speed,this method is suitable to data analysis of short-acting anesthesia drug population pharmacokinetic and pharmacodynamics. 展开更多
关键词 Elman neural network REMIFENTANIL plasma concentration predication model
在线阅读 下载PDF
Slope displacement prediction based on morphological filtering 被引量:4
6
作者 李启月 许杰 +1 位作者 王卫华 范作鹏 《Journal of Central South University》 SCIE EI CAS 2013年第6期1724-1730,共7页
Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter wit... Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter with multiple structure elements was designed to process measured displacement time series with adaptive multi-scale decoupling.Whereafter,functional-coefficient auto regressive (FAR) models were established for the random subsequences.Meanwhile,the trend subsequence was processed by least squares support vector machine (LSSVM) algorithm.Finally,extrapolation results obtained were superposed to get the ultimate prediction result.Case study and comparative analysis demonstrate that the presented method can optimize training samples and show a good nonlinear predicting performance with low risk of choosing wrong algorithms.Mean absolute percentage error (MAPE) and root mean square error (RMSE) of the MM-FAR&LSSVM predicting results are as low as 1.670% and 0.172 mm,respectively,which means that the prediction accuracy are improved significantly. 展开更多
关键词 slope displacement prediction parallel-composed morphological filter functional-coefficient auto regressive predictionaccuracy
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部