针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化...针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化目标的数学模型;并在传统蚁群算法的基础上,利用节约启发式构造初始解初始化信息素,改进状态转移规则,引入局部搜索策略,提出一种带自适应大邻域搜索的混合蚁群算法(Ant Colony Optimization with Adaptive Large Neighborhood Search,ACO-ALNS)进行求解;最后,分别选取基准问题算例和改编生成TDVRPSPDTW算例进行实验。实验结果表明:本文提出的ACO-ALNS算法可有效解决TDVRPSPDTW的基准问题;相较于模拟退火算法和带局部搜索的蚁群算法,本文算法求解得到的总配送成本最优值平均分别改善7.56%和2.90%;另外,相比于仅考虑碳排放或配送时间的模型,本文所构建的模型综合多种因素,总配送成本平均分别降低4.38%和3.18%,可有效提高物流企业的经济效益。展开更多
在经典车辆路径问题(vehicle routing problem,VRP)的基础上增加了客户要求访问的时间窗约束,以车辆行驶路径最短和使用车辆数最小为目标,建立了不确定车辆数的多约束车辆路径问题(multi-constraint vehicle routing problem with varia...在经典车辆路径问题(vehicle routing problem,VRP)的基础上增加了客户要求访问的时间窗约束,以车辆行驶路径最短和使用车辆数最小为目标,建立了不确定车辆数的多约束车辆路径问题(multi-constraint vehicle routing problem with variable fleets,MVRP-VF)的数学模型。引入遗传算法的交叉操作以及大规模邻域搜索算法中的破坏算子和修复算子,重新定义了基本灰狼优化算法(grey wolf optimizer,GWO)的操作算子,优化了GWO的寻优机制,从而设计出用于求解MVRP-VF问题的混合灰狼优化算法(hybrid grey wolf optimizer,HGWO)。通过仿真实验与其他参考文献中的算法求解结果进行比较,验证了HGWO求解该类问题的有效性与可行性。展开更多
针对一类考虑城市交通拥堵情况的时间依赖型多时间窗车辆路径问题(time-dependent vehicle routing problem with multiple time windows,TD_VRPMTW),提出一种混合离散灰狼算法(hybrid discrete grey wolf optimizer,HDGWO)进行求解。在...针对一类考虑城市交通拥堵情况的时间依赖型多时间窗车辆路径问题(time-dependent vehicle routing problem with multiple time windows,TD_VRPMTW),提出一种混合离散灰狼算法(hybrid discrete grey wolf optimizer,HDGWO)进行求解。在HDGWO中,设计了新的灰狼个体更新公式,采用基于客户排列的整数编码方式,使算法可直接在离散问题解空间中执行基于标准灰狼算法个体更新机理的全局搜索;设计了基于问题性质的种群初始化策略,用于生成具有高质量和多样性的初始种群;引入头狼信息交流公式,用于探索头狼形成的优质解空间;构造具有多种局部搜索操作的自适应变邻域局部搜索策略,用于增强算法的局部搜索能力。结果表明:HDGWO可有效求解TD_VRPMTW。展开更多
绿色车辆路径规划对物流配送领域的节能减排具有重要的现实意义。针对时间依赖型绿色车辆路径问题(time-dependent green vehicle routing problem,TDGVRP),考虑车辆不同出发时刻对行驶时间的影响,分析车辆时变速度、载重与碳排放率之...绿色车辆路径规划对物流配送领域的节能减排具有重要的现实意义。针对时间依赖型绿色车辆路径问题(time-dependent green vehicle routing problem,TDGVRP),考虑车辆不同出发时刻对行驶时间的影响,分析车辆时变速度、载重与碳排放率之间的关系,确定基于车辆时变速度和载重的碳排放率度量函数;在此基础上,以车辆油耗和碳排放成本、使用时间成本和固定成本、等待成本与人力成本之和作为目标函数,构建TDGVRP模型,并根据模型特点设计基于路段划分策略的车辆行驶时间计算方法,提出了改进蚁群算法。算例仿真结果表明,构建的模型和提出的算法能合理规划车辆出发时刻,有效规避交通拥堵时间段,降低配送总成本,减少油耗和碳排放。展开更多
文摘针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化目标的数学模型;并在传统蚁群算法的基础上,利用节约启发式构造初始解初始化信息素,改进状态转移规则,引入局部搜索策略,提出一种带自适应大邻域搜索的混合蚁群算法(Ant Colony Optimization with Adaptive Large Neighborhood Search,ACO-ALNS)进行求解;最后,分别选取基准问题算例和改编生成TDVRPSPDTW算例进行实验。实验结果表明:本文提出的ACO-ALNS算法可有效解决TDVRPSPDTW的基准问题;相较于模拟退火算法和带局部搜索的蚁群算法,本文算法求解得到的总配送成本最优值平均分别改善7.56%和2.90%;另外,相比于仅考虑碳排放或配送时间的模型,本文所构建的模型综合多种因素,总配送成本平均分别降低4.38%和3.18%,可有效提高物流企业的经济效益。
文摘在经典车辆路径问题(vehicle routing problem,VRP)的基础上增加了客户要求访问的时间窗约束,以车辆行驶路径最短和使用车辆数最小为目标,建立了不确定车辆数的多约束车辆路径问题(multi-constraint vehicle routing problem with variable fleets,MVRP-VF)的数学模型。引入遗传算法的交叉操作以及大规模邻域搜索算法中的破坏算子和修复算子,重新定义了基本灰狼优化算法(grey wolf optimizer,GWO)的操作算子,优化了GWO的寻优机制,从而设计出用于求解MVRP-VF问题的混合灰狼优化算法(hybrid grey wolf optimizer,HGWO)。通过仿真实验与其他参考文献中的算法求解结果进行比较,验证了HGWO求解该类问题的有效性与可行性。
文摘针对一类考虑城市交通拥堵情况的时间依赖型多时间窗车辆路径问题(time-dependent vehicle routing problem with multiple time windows,TD_VRPMTW),提出一种混合离散灰狼算法(hybrid discrete grey wolf optimizer,HDGWO)进行求解。在HDGWO中,设计了新的灰狼个体更新公式,采用基于客户排列的整数编码方式,使算法可直接在离散问题解空间中执行基于标准灰狼算法个体更新机理的全局搜索;设计了基于问题性质的种群初始化策略,用于生成具有高质量和多样性的初始种群;引入头狼信息交流公式,用于探索头狼形成的优质解空间;构造具有多种局部搜索操作的自适应变邻域局部搜索策略,用于增强算法的局部搜索能力。结果表明:HDGWO可有效求解TD_VRPMTW。
文摘绿色车辆路径规划对物流配送领域的节能减排具有重要的现实意义。针对时间依赖型绿色车辆路径问题(time-dependent green vehicle routing problem,TDGVRP),考虑车辆不同出发时刻对行驶时间的影响,分析车辆时变速度、载重与碳排放率之间的关系,确定基于车辆时变速度和载重的碳排放率度量函数;在此基础上,以车辆油耗和碳排放成本、使用时间成本和固定成本、等待成本与人力成本之和作为目标函数,构建TDGVRP模型,并根据模型特点设计基于路段划分策略的车辆行驶时间计算方法,提出了改进蚁群算法。算例仿真结果表明,构建的模型和提出的算法能合理规划车辆出发时刻,有效规避交通拥堵时间段,降低配送总成本,减少油耗和碳排放。