待分解信号复杂度增大时传统单信号分解技术易产生过高特征空间维度的高频本征模态函数(intrinsic mode function,IMF),从而严重限制了长短时记忆神经网络(long short term memory,LSTM)的长时序预报能力。以舟山群岛南部外海某观测点...待分解信号复杂度增大时传统单信号分解技术易产生过高特征空间维度的高频本征模态函数(intrinsic mode function,IMF),从而严重限制了长短时记忆神经网络(long short term memory,LSTM)的长时序预报能力。以舟山群岛南部外海某观测点所收集的海浪数据为基础,提出融合ICEEMDAN-VMD级联分解策略和LSTM的混合模型。该混合模型准确捕捉海洋波浪的非线性特征和长时序依赖规律,提高了复杂海况下对有效波高、有效波周期、波向的长时预报能力。与多变量LSTM模型相比,混合模型的48 h和72 h有效波高预测均方根误差(root mean square error,RMSE)降幅分别为53.9%和33.8%,有效波周期预测RMSE降幅分别为46.1%和39.1%,波向预测RMSE降幅分别为30.5%和23.9%。与EMD-LSTM模型相比,混合模型有效波高、有效波周期、波向的RMSE平均降幅分别为13.52%、17.79%、15.39%。展开更多
文摘待分解信号复杂度增大时传统单信号分解技术易产生过高特征空间维度的高频本征模态函数(intrinsic mode function,IMF),从而严重限制了长短时记忆神经网络(long short term memory,LSTM)的长时序预报能力。以舟山群岛南部外海某观测点所收集的海浪数据为基础,提出融合ICEEMDAN-VMD级联分解策略和LSTM的混合模型。该混合模型准确捕捉海洋波浪的非线性特征和长时序依赖规律,提高了复杂海况下对有效波高、有效波周期、波向的长时预报能力。与多变量LSTM模型相比,混合模型的48 h和72 h有效波高预测均方根误差(root mean square error,RMSE)降幅分别为53.9%和33.8%,有效波周期预测RMSE降幅分别为46.1%和39.1%,波向预测RMSE降幅分别为30.5%和23.9%。与EMD-LSTM模型相比,混合模型有效波高、有效波周期、波向的RMSE平均降幅分别为13.52%、17.79%、15.39%。