期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
时空轨迹大数据分布式蜂群模式挖掘算法 被引量:10
1
作者 于彦伟 齐建鹏 +2 位作者 陆云辉 赵金东 张永刚 《计算机工程与科学》 CSCD 北大核心 2016年第2期255-261,共7页
针对时空轨迹大数据的蜂群模式挖掘需求,提出了一种高效的基于MapReduce的分布式蜂群模式挖掘算法。首先,提出了基于最大移动目标集的对象集闭合蜂群模式概念,并利用最小时间支集优化了串行挖掘算法;其次,提出了蜂群模式的并行化挖掘模... 针对时空轨迹大数据的蜂群模式挖掘需求,提出了一种高效的基于MapReduce的分布式蜂群模式挖掘算法。首先,提出了基于最大移动目标集的对象集闭合蜂群模式概念,并利用最小时间支集优化了串行挖掘算法;其次,提出了蜂群模式的并行化挖掘模型,利用蜂群模式时间域无关性,并行化了聚类与子时间域上的蜂群模式挖掘过程;第三,设计了一个基于MapReduce链式架构的分布式并行挖掘算法,通过四个阶段快速地实现了蜂群模式的并行挖掘;最后,在Hadoop平台上,使用真实交通轨迹大数据集对分布式算法的有效性和高效性进行了验证与分析。 展开更多
关键词 时空轨迹挖掘 大数据 蜂群模式 分布式 MAPREDUCE
在线阅读 下载PDF
基于网格索引的时空轨迹伴随模式挖掘算法 被引量:8
2
作者 杨阳 吉根林 鲍培明 《计算机科学》 CSCD 北大核心 2016年第1期107-110,共4页
时空轨迹伴随模式是数据挖掘领域的一项重要研究内容。CMC(Coherent Moving Cluster)算法是一种经典的时空轨迹伴随模式挖掘算法,该算法引入了DBSCAN算法以挖掘出任意形状的簇。但是,DBSCAN聚类算法极耗时,导致CMC算法的时间效率较低。... 时空轨迹伴随模式是数据挖掘领域的一项重要研究内容。CMC(Coherent Moving Cluster)算法是一种经典的时空轨迹伴随模式挖掘算法,该算法引入了DBSCAN算法以挖掘出任意形状的簇。但是,DBSCAN聚类算法极耗时,导致CMC算法的时间效率较低。因此提出了一种基于网格索引的时空轨迹伴随模式挖掘算法MAP-G(Mining Adjoint Pattern of spatial-temporal trajectory based on the Grid index)。实验表明,MAP-G算法不仅比CMC算法具有更高的时间效率,而且能够过滤掉部分不正确的结果,因此结果也更加准确。 展开更多
关键词 伴随模式 时空轨迹挖掘 网格索引
在线阅读 下载PDF
时空轨迹大数据模式挖掘研究进展 被引量:42
3
作者 吉根林 赵斌 《数据采集与处理》 CSCD 北大核心 2015年第1期47-58,共12页
时空轨迹挖掘是数据挖掘领域的前沿研究课题,通过研究和开发时空轨迹挖掘技术,来发现隐藏在轨迹大数据中有价值的规律和知识以供决策支持。本文介绍了时空轨迹大数据模式挖掘与知识发现领域的研究进展;然后对时空轨迹模式挖掘技术产生... 时空轨迹挖掘是数据挖掘领域的前沿研究课题,通过研究和开发时空轨迹挖掘技术,来发现隐藏在轨迹大数据中有价值的规律和知识以供决策支持。本文介绍了时空轨迹大数据模式挖掘与知识发现领域的研究进展;然后对时空轨迹模式挖掘技术产生的背景、应用领域和研究现状作了简介,并探讨了面向时空轨迹大数据模式挖掘的研究内容、系统架构以及关键技术,最后对时空轨迹频繁模式、伴随模式、聚集模式和异常模式的挖掘算法思想进行了阐述。 展开更多
关键词 时空轨迹模式挖掘 时空轨迹大数据 轨迹频繁模式 轨迹伴随模式 轨迹聚集模式 轨迹异常模式
在线阅读 下载PDF
基于演化计算的异常轨迹并行检测算法 被引量:2
4
作者 唐梦梦 吉根林 赵斌 《数据采集与处理》 CSCD 北大核心 2017年第2期382-389,共8页
异常轨迹检测是轨迹数据挖掘研究领域的一个重要研究内容,基于演化计算的异常轨迹检测算法(Top-kevolving trajectory outlier detection,TOP-EYE)是一种有效的异常轨迹检测算法。不同于其他算法采用的轨迹距离计算方法,TOP-EYE算法从... 异常轨迹检测是轨迹数据挖掘研究领域的一个重要研究内容,基于演化计算的异常轨迹检测算法(Top-kevolving trajectory outlier detection,TOP-EYE)是一种有效的异常轨迹检测算法。不同于其他算法采用的轨迹距离计算方法,TOP-EYE算法从轨迹的方向和密度角度出发,采用演化计算的方式检测异常。为了提高TOP-EYE算法对海量轨迹数据集异常检测的效率,本文在其基础上提出了基于MapReduce的异常轨迹检测并行算法(Parallel detecting abnormal trajectory based on TOP-EYE,PDAT-TOP),利用MapReduce并行计算的优势提高了异常轨迹检测的效率。将算法PDAT-TOP在Hadoop平台上加以实现,实验结果表明,算法PDAT-TOP能够有效地检测异常轨迹,并且具有较高的可扩展性和加速比。 展开更多
关键词 异常轨迹检测 演化计算 并行异常轨迹检测 时空轨迹挖掘
在线阅读 下载PDF
基于深度表示模型的移动模式挖掘 被引量:2
5
作者 陈勐 禹晓辉 刘洋 《计算机应用》 CSCD 北大核心 2016年第1期33-38,共6页
针对时空轨迹中位置顺序和时间对于理解用户移动模式的重要性,提出了一种新的用户轨迹深度表示模型。该模型考虑到时空轨迹的特点:1)不同的位置顺序表示不同的移动模式;2)轨迹有周期性并且在不同的时间段有变化。首先,将两个连续的位置... 针对时空轨迹中位置顺序和时间对于理解用户移动模式的重要性,提出了一种新的用户轨迹深度表示模型。该模型考虑到时空轨迹的特点:1)不同的位置顺序表示不同的移动模式;2)轨迹有周期性并且在不同的时间段有变化。首先,将两个连续的位置点组合成位置序列;然后,将位置序列和对应的时间块组合成时间位置序列,作为描述轨迹特征的基本单位;最后,利用深度表示模型为每个序列训练特征向量。为了验证深度表示模型的有效性,设计实验将时间位置序列向量应用到用户移动模式发现中,并利用Gowalla签到数据集进行了实验评测。实验结果显示提出的模型能够发现"上班""购物"等明确的模式,而Word2Vec很难发现有意义的移动模式。 展开更多
关键词 时空轨迹挖掘 用户移动模式 深度表示模型 时间位置序列向量 哈夫曼编码
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部