期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Swin-Transformer和时空融合注意力机制的ENSO预测
1
作者 张霄智 方巍 王淏西 《海洋学报》 CSCD 北大核心 2024年第12期111-121,共11页
厄尔尼诺-南方涛动预测是气候变化研究的热点问题之一。本文将Swin-Transformer模型与时空融合注意力机制相结合,采用1850-2014年CMIP6多模式模拟历史数据、1871-1979年SODA同化数据和1980-2023年GODAS同化数据,构建厄尔尼诺-南方涛动... 厄尔尼诺-南方涛动预测是气候变化研究的热点问题之一。本文将Swin-Transformer模型与时空融合注意力机制相结合,采用1850-2014年CMIP6多模式模拟历史数据、1871-1979年SODA同化数据和1980-2023年GODAS同化数据,构建厄尔尼诺-南方涛动预测模型,即ENSO-STformer。该模型通过在CMIP6和SODA数据集上进行充分的训练,并在GODAS数据上进行评估,结果表明:本文模型在提前11个月的Ni?o3.4指数相关技巧的平均值上分别比CanCM4、CCSM3、GFDLaer04动力预报系统高出5.1%、21.6%和12.4%,同时,在中长期的Ni?o3.4指数相关技巧上显著优于其他深度学习模型,并可以进行长达24个月的有效ENSO预测,此外,在对2015-2016年厄尔尼诺事件模拟中表现出较强的应对春季预报障碍能力。 展开更多
关键词 深度学习 ENSO预测 时空融合注意力机制 卷积神经网络 Ni?o3.4指数
在线阅读 下载PDF
基于时空融合的多头注意力车辆轨迹预测 被引量:7
2
作者 宋秀兰 董兆航 +1 位作者 单杭冠 陆炜杰 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第8期1636-1643,共8页
针对时空维度特征影响自动驾驶车辆轨迹精度的问题,提出基于时空融合的多头注意力(TSMHA)车辆轨迹预测模型,对于空间与时间2个维度的特征信息,分别使用多头注意力机制提取车辆空间交互感知与时间运动模式.为了获得互补特征,并除去特征... 针对时空维度特征影响自动驾驶车辆轨迹精度的问题,提出基于时空融合的多头注意力(TSMHA)车辆轨迹预测模型,对于空间与时间2个维度的特征信息,分别使用多头注意力机制提取车辆空间交互感知与时间运动模式.为了获得互补特征,并除去特征数据中的冗余,将处理后的时空特征信息传输至门控特征融合模型进行特征融合.使用基于长短期记忆(LSTM)的编解码器结构,考虑编码与解码2个过程中轨迹之间潜在的相互作用,循环生成目标车辆未来预测轨迹.在训练过程中使用L2损失函数,以此降低预测轨迹与真实轨迹的差值.实验表明,与对比算法模型相比,在直线高速公路、城市十字路口、环岛场景下,本研究所提出的模型的精度分别提高了3.95%、15.64%、31.40%. 展开更多
关键词 车辆智能决策 轨迹预测 时空融合注意力机制 多目标车辆 神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部