期刊文献+
共找到95篇文章
< 1 2 5 >
每页显示 20 50 100
时空序列深度学习模型在玉米产量预测中的应用与优化
1
作者 詹火木 周蕊 虞豹 《当代农机》 2025年第10期96-97,共2页
聚焦于时空序列深度学习模型的研究,又把该模型应用于玉米产量预测并实施了优化,开发一个包含卷积长短期记忆网络、图神经网络、注意力机制的模型框架,以达成区域产量的预判、空间依赖的捕获、关键时间特征的抽取,采用多尺度特征融合途... 聚焦于时空序列深度学习模型的研究,又把该模型应用于玉米产量预测并实施了优化,开发一个包含卷积长短期记忆网络、图神经网络、注意力机制的模型框架,以达成区域产量的预判、空间依赖的捕获、关键时间特征的抽取,采用多尺度特征融合途径,通过迁移学习及不确定性量化等方法,显著提高了模型预测精度,缓和了数据稀疏状况,提升了模型的可靠水平。研究结论为玉米产量的精准预测提供了技术保障,对农业生产决策优化有重要的指导性意义。 展开更多
关键词 时空序列深度学习模型 玉米产量 预测 卷积长短期记忆网络
在线阅读 下载PDF
基于深度学习的大坝边坡深部变形时空预测模型研究
2
作者 周小燕 李双平 +5 位作者 冉鲁光 苏振 张斌 刘祖强 苏森南 史波 《中国农村水利水电》 北大核心 2025年第7期182-187,195,共7页
大坝边坡大变形或滑坡严重威胁库区长久运行安全。主流传统边坡变形预测模型未能充分考虑变形的时间和空间特征。引入Transformer、时空图卷积神经网络(STGCN)、时序卷积网络(TCN)和图卷积神经网络(GCN)四种代表性深度学习方法,提出基... 大坝边坡大变形或滑坡严重威胁库区长久运行安全。主流传统边坡变形预测模型未能充分考虑变形的时间和空间特征。引入Transformer、时空图卷积神经网络(STGCN)、时序卷积网络(TCN)和图卷积神经网络(GCN)四种代表性深度学习方法,提出基于深度学习模型的边坡测斜孔变形时空预测方法。利用某水电边坡测斜孔变形监测数据,对监测数据展开系统性分析。预测结果表明,GCN、TCN、STGCN和Transformer四种模型均适用于边坡时空预测,其中TCN模型相较于其他3种时空预测模型展现出了更高的预测精度和可靠性,评估指标MAE、MSE、RMSE、MAPE和R2分别为1.007、2.2082、1.486、102.40%和0.9884。此外,4个模型的不同日期的预测结果与实测值的误差分布在0~4 mm之间,验证了4个模型在边坡测斜孔变形时空预测的准确性和有效性。研究结果为库区边坡变形时空短期预测提供了新思路。 展开更多
关键词 深度学习 大坝边坡变形 时空预测模型 时序卷积网络模型
在线阅读 下载PDF
基于数据挖掘与深度语义模型的工艺序列推荐方法
3
作者 郑佳辉 郭宇 +3 位作者 吴涛 王胜博 黄少华 郑凯文 《图学学报》 北大核心 2025年第4期864-873,共10页
为了应对航空制造工艺设计中传统的“经验驱动”方法面临的“数据超载”问题,难以实现航空复杂零件的智能化工艺设计,提出一种基于数据挖掘与深度语义模型的工艺序列推荐方法。通过采用PrefixSpan算法与BERT大语言模型相结合从零件实例... 为了应对航空制造工艺设计中传统的“经验驱动”方法面临的“数据超载”问题,难以实现航空复杂零件的智能化工艺设计,提出一种基于数据挖掘与深度语义模型的工艺序列推荐方法。通过采用PrefixSpan算法与BERT大语言模型相结合从零件实例数据中挖掘典型制造工艺序列及其相关能力,构建了可重用、可更新的制造工艺知识库。在此基础上,针对航空制造数据的特点提出了一种改进的空间通道注意力机制,进行零件实例数据隐式特征提取,同时针对零件实例不均衡分布导致的“冷启动”问题,结合自监督学习挖掘数据的深层结构,保证模型泛化能力和小样本实例的学习能力。通过基于双通道注意力的深度语义模型与自监督学习相结合的方法,使得模型在数据不平衡的情况下更好地提取特征、学习知识以及准确地推荐更加符合航空工艺设计的工艺序列。以某航空零件为例,进行了制造工艺序列的推荐与验证。实验结果表明,该方法在制造工艺序列推荐的各项指标上均优于基准模型,验证了该方法的有效性,且能满足航空工艺设计人员的智能化工艺设计需求。 展开更多
关键词 数据挖掘 自监督学习 深度语义模型 航空复杂零件 制造序列推荐
在线阅读 下载PDF
基于深度学习的山洪时空预测代理模型 被引量:2
4
作者 杨勇川 王俊彦 +1 位作者 文海家 王乃玉 《自然灾害学报》 CSCD 北大核心 2024年第4期164-175,共12页
山洪是全球范围内最危险的自然灾害之一,具有突发性强、成灾快和破坏力大并且难以短时临近预测的特点。传统山洪预报预警方法主要依赖于基于物理机制的水文-水动力山洪过程模拟,然而这种方法计算复杂耗时较长,难以满足山洪的短时临近预... 山洪是全球范围内最危险的自然灾害之一,具有突发性强、成灾快和破坏力大并且难以短时临近预测的特点。传统山洪预报预警方法主要依赖于基于物理机制的水文-水动力山洪过程模拟,然而这种方法计算复杂耗时较长,难以满足山洪的短时临近预测需求。以浙江临安仁里村为例,在水文-水动力物理模拟所产生的8378条降雨时序和对应山洪淹没时空序列数据集的基础上,以基于卷积门控循环单元(convolutional gated recurrent unit convGRU)的深度神经网络作为核心,构建山洪时空序列预测代理模型。该模型通过输入过去24小时降雨观测时序和未来6小时的降雨预报时序,可实现未来6小时山洪淹没时空演变过程的快速预测。代理模型在测试集中能可靠地预测未来逐小时的山洪淹没范围、最大淹没深度以及淹没位置,未来6小时预测的可决系数均值为0.96,且预测速度平均比物理模拟快15625倍。这表明该代理模型能够捕捉物理模拟中降雨到山洪的复杂映射关系,实现目标区域山洪的快速预测,为山洪预警及应急响应决策制定提供有力的模型基础。 展开更多
关键词 深度学习 山洪模型 时空序列预测 卷积门控循环单元 代理模型
在线阅读 下载PDF
视觉深度学习模型压缩加速综述 被引量:4
5
作者 丁贵广 陈辉 +3 位作者 王澳 杨帆 熊翊哲 梁伊雯 《智能系统学报》 CSCD 北大核心 2024年第5期1072-1081,共10页
近年来,深度学习模型规模越来越大,在嵌入式设备等资源受限环境中,大规模视觉深度学习模型难以实现高效推理部署。模型压缩加速可以有效解决该挑战。尽管已经出现相关工作的综述,但相关工作集中在卷积神经网络的压缩加速,缺乏对视觉Tran... 近年来,深度学习模型规模越来越大,在嵌入式设备等资源受限环境中,大规模视觉深度学习模型难以实现高效推理部署。模型压缩加速可以有效解决该挑战。尽管已经出现相关工作的综述,但相关工作集中在卷积神经网络的压缩加速,缺乏对视觉Transformer模型压缩加速方法的整理和对比分析。因此,本文以视觉深度学习模型压缩技术为核心,对卷积神经网络和视觉Transformer模型2个最重要的视觉深度模型进行了相关技术手段的整理,并对技术热点和挑战进行了总结和分析。本文旨在为研究者提供一个全面了解模型压缩和加速领域的视角,促进深度学习模型压缩加速技术的发展。 展开更多
关键词 视觉深度学习 模型压缩 轻量化结构 模型剪枝 模型量化 模型蒸馏 TRANSFORMER 序列剪枝
在线阅读 下载PDF
基于深度学习的车辆轨迹预测研究综述
6
作者 刘凯 汪佳琴 李汉涛 《郑州大学学报(工学版)》 北大核心 2025年第5期77-89,共13页
车辆轨迹预测(VTP)是交通技术领域中的重要研究对象。传统VTP方法需要大量特征工程,且难以实时适应复杂变化的环境。深度学习(DL)通过多层神经网络实现高效数据表达,克服了传统方法的局限性。对基于DL的VTP方法进行了综述,探讨了其在VT... 车辆轨迹预测(VTP)是交通技术领域中的重要研究对象。传统VTP方法需要大量特征工程,且难以实时适应复杂变化的环境。深度学习(DL)通过多层神经网络实现高效数据表达,克服了传统方法的局限性。对基于DL的VTP方法进行了综述,探讨了其在VTP中的应用及性能表现。首先,回顾了传统VTP方法和基于DL的VTP方法,介绍了VTP主要考虑的问题和问题的表述;其次,分析并比较了各类VTP方案,包括输入数据、输出结果和预测方法;再次,介绍了常用的评估指标,比较了这些VTP方案的实验结果,分析了VTP的应用,并展示了DL在VTP中表现出的优异性能;最后,展望了VTP未来在数据集、建模和计算效率方面的研究方向,指出车辆交互协同建模、模型的泛化以及多模态融合将是未来的挑战和研究方向。 展开更多
关键词 车辆轨迹预测 深度学习 序列网络 图神经网络 生成模型 网格方法
在线阅读 下载PDF
MEPM模型:基于深度学习的多变量厄尔尼诺-南方涛动预测模型 被引量:1
7
作者 方巍 张霄智 齐媚涵 《地球科学与环境学报》 CAS 北大核心 2024年第3期285-297,共13页
厄尔尼诺-南方涛动(ENSO)是发生在热带太平洋年际时间尺度的海-气相互作用的异常现象,并由Nino3.4指数表征其发生情况;除此之外,ENSO与众多极端气候事件密切相关。因此,有效的ENSO预测对于预防极端气候事件和深入研究全球气候变化具有... 厄尔尼诺-南方涛动(ENSO)是发生在热带太平洋年际时间尺度的海-气相互作用的异常现象,并由Nino3.4指数表征其发生情况;除此之外,ENSO与众多极端气候事件密切相关。因此,有效的ENSO预测对于预防极端气候事件和深入研究全球气候变化具有重要意义。然而,目前基于深度学习的ENSO预测大多数是预测一个指数或者单一变量,对于模拟多气候要素下的ENSO预测研究较少。通过提出一种利用多气候变量的ENSO预测模型——MEPM模型,其中包括多变量信息提取模块(MIEM)和时空融合模块(STFM),捕获不同气候变量在时空上的相互依赖性,进而提高ENSO预测的准确性。选取了纬向风应力异常(τ_(x))、经向风应力异常(τ_(y))、海表温度异常(SSTA)和海表下150 m温度异常(SSTA150)4个变量的距平值进行ENSO预测。结果表明:MEPM模型在提前11个月的Nino3.4指数相关技巧上分别比北美多模型集合中的动力预报系统CanCM4、CCSM3和GFDL-aer04高10%、20%和14%。此外,MEPM模型在中期Nino3.4指数相关技巧上显著优于其他深度学习模型,并可提供长达17个月的有效预测。 展开更多
关键词 气候变化 厄尔尼诺-南方涛动 多气候变量 深度学习 时空序列预测 卷积神经网络
在线阅读 下载PDF
基于深度强化学习的WRSN动态时空充电调度 被引量:3
8
作者 王艺均 冯勇 +1 位作者 刘明 刘念伯 《软件学报》 EI CSCD 北大核心 2024年第3期1485-1501,共17页
高效的移动充电调度是构建长生命期、可持续运行的无线可充电传感器网络(WRSN)的关键之一.现有基于强化学习的充电策略只考虑了移动充电调度问题的一个维度,即移动充电器(MC)的路径规划,而忽略了充电调度问题中的另一维度,即充电时长调... 高效的移动充电调度是构建长生命期、可持续运行的无线可充电传感器网络(WRSN)的关键之一.现有基于强化学习的充电策略只考虑了移动充电调度问题的一个维度,即移动充电器(MC)的路径规划,而忽略了充电调度问题中的另一维度,即充电时长调整,因而仍然存在性能限制.提出一种基于深度强化学习的WRSN动态时空充电调度方法(SCSD),建立充电序列调度和充电时长动态调整的深度强化学习模型.针对移动充电调度中离散的充电序列规划和连续的充电时长调整问题,使用DQN为待充电节点优化充电序列,并基于DDPG计算并动态调整序列中待充电节点的充电时长.通过分别从空间和时间两个维度的优化,在避免节点缺电失效的同时,所提出的SCSD可实现充电性能的有效提高.大量仿真实验结果表明,SCSD与现有的几种有代表性的充电方案相比,其充电性能具有明显的优势. 展开更多
关键词 无线可充电传感器网络 深度强化学习 时空充电策略 充电序列 充电时长 充电性能
在线阅读 下载PDF
基于可解释多源数据特征融合的深度学习集合径流预测
9
作者 丁诚 王兆才 +1 位作者 丁伟杰 程和琴 《水科学进展》 北大核心 2025年第4期581-595,共15页
准确的径流预测是水资源管理与洪涝预警的核心,但径流过程的高度非线性给传统模型带来了挑战,且存在时空特征融合不足与可解释性欠缺等问题。本文融合遥感、气象等24类多源异构数据,综合考量人类活动与气候变化的影响,构建高精度、可解... 准确的径流预测是水资源管理与洪涝预警的核心,但径流过程的高度非线性给传统模型带来了挑战,且存在时空特征融合不足与可解释性欠缺等问题。本文融合遥感、气象等24类多源异构数据,综合考量人类活动与气候变化的影响,构建高精度、可解释的Transformer-KAN-LEC(TKL)深度学习集合径流预测模型。以嘉陵江流域11个站点的日径流预测为例开展研究,结果表明:TKL模型纳什效率系数均大于0.95,均方根误差较传统模型降低40%~80%,区间预测与极端事件预测性能均优于传统模型;可解释性分析显示,上游径流量、降水累积效应为关键影响因子。本文提出的“数据-模型-解释”系统性框架可为大流域水资源管理与洪涝预警提供支持。 展开更多
关键词 径流预测 深度学习集合模型 时空特征融合 区间预测 注意力机制
在线阅读 下载PDF
基于Transformer时间序列分块模型的CO_(2)驱油藏静压预测方法
10
作者 李春雷 杨河山 +3 位作者 张红霞 曹裕民 姜兴兴 靳彩霞 《油气地质与采收率》 北大核心 2025年第4期126-133,共8页
油藏静压是油田开发研究中的一项重要基础资料,其获取条件苛刻,样本数量极少,目前根据生产过程中的动压数据利用经验法估算静压,数据误差较大。针对上述问题,借助深度学习理论,提出一种基于Transformer时间序列分块模型的CO_(2)驱油藏... 油藏静压是油田开发研究中的一项重要基础资料,其获取条件苛刻,样本数量极少,目前根据生产过程中的动压数据利用经验法估算静压,数据误差较大。针对上述问题,借助深度学习理论,提出一种基于Transformer时间序列分块模型的CO_(2)驱油藏静压预测方法。根据相关性分析筛选模型参数,利用迭代插补器填充样本,构建静压预测样本集;依据通道独立原则,将多变量时间序列划分为单变量时间序列,引入时间序列分块机制将时间序列切分为子序列块以捕获局部特征;基于Transformer模型架构,利用多头自注意力机制提取特征,自监督学习机制提升对复杂动态特性的捕捉能力,实现CO_(2)驱油藏静压的预测。研究结果表明,所提出的模型可以实现对未停产井组每口井油层中部静压的预测,并显著提高预测的准确性。 展开更多
关键词 深度学习 时间序列分块模型 油藏静压 预测模型 TRANSFORMER
在线阅读 下载PDF
面向多变量时间序列异常检测的双图注意力网络模型
11
作者 李汉章 严宣辉 +2 位作者 李镇力 严雨薇 王廷银 《计算机科学与探索》 北大核心 2025年第4期1048-1064,共17页
时间序列异常检测在时序任务中属于经典研究领域,并已在学术界和工业界取得了一系列研究成果。针对多变量时间序列数据中蕴含的多角度深层特征和内在复杂依赖关系,提出一种融合时空特征的异常检测模型。该模型采用图注意力网络结构,由... 时间序列异常检测在时序任务中属于经典研究领域,并已在学术界和工业界取得了一系列研究成果。针对多变量时间序列数据中蕴含的多角度深层特征和内在复杂依赖关系,提出一种融合时空特征的异常检测模型。该模型采用图注意力网络结构,由时间图模块(T-GAT)和空间图模块(F-GAT)组成。T-GAT构建一种单向加权图,图的边表示时间依赖特性,以此来模拟时间图结构的先验信息并融入图网络中获取时间依赖关系。F-GAT将时间序列转换为以幅值表示的频域序列,通过建立全局双向加权图来模拟多变量之间的关联关系,并通过正则化来维护邻居节点的稀疏性,以此来保证对空间关系的准确捕捉。同时模型引入多维注意力机制确保对不同特征的深层信息进行有效挖掘和利用。由门控循环单元进一步处理时空信息并融合为全面特征,并通过预测值与观测值的差异来判定异常。实验结果表明,该模型以4个公共数据集上优异的F1分数在12个对比模型中实现先进的性能,并在消融实验中证实了同时建模时空关系的先验双图结构模式和注意力机制有效提升了异常检测精度,可以有效地识别时间序列数据中的异常情况。 展开更多
关键词 多变量时间序列 异常检测 深度学习 时空信息 图注意力网络
在线阅读 下载PDF
基于深度学习的不完整时序数据补全方法综述
12
作者 周立 吴洋洋 苗晓晔 《计算机研究与发展》 北大核心 2025年第9期2233-2258,共26页
时序数据广泛存在于工业、金融、交通、气象及医疗等领域,具有重要的分析应用价值.然而由于人为或偶发因素导致的缺失,时序数据的完整性经常遭到破坏,进而削弱基于其开展的分析与决策的准确性和可靠性.不完整时序数据通常包含复杂的时... 时序数据广泛存在于工业、金融、交通、气象及医疗等领域,具有重要的分析应用价值.然而由于人为或偶发因素导致的缺失,时序数据的完整性经常遭到破坏,进而削弱基于其开展的分析与决策的准确性和可靠性.不完整时序数据通常包含复杂的时序依赖和变量间关系,为缺失值的有效补全带来较大挑战.深度学习方法具有强大的建模能力,是应对该挑战的有效技术,并日益成为研究热点.故系统综述基于深度学习的不完整时序数据补全方法的研究现状,首先介绍其相关概念和定义,进而对现有方法进行分类,归纳各类代表性方法的核心思想与特点.随后整理常用的开源数据集与评价指标,并设计全面系统的实验方案.实验从缺失场景、缺失率、变量数量、序列长度以及对下游任务的提升效果等多个角度,评估10种主流深度学习方法的补全质量与效率,最终总结实验结果并依据场景推荐合适的补全方法.最后,结合当前研究进展对该领域的未来发展趋势进行展望,并总结全文. 展开更多
关键词 深度学习 模型 时间序列 不完整数据补全 数据治理
在线阅读 下载PDF
基于视频深度学习的时空双流人物动作识别模型 被引量:25
13
作者 杨天明 陈志 岳文静 《计算机应用》 CSCD 北大核心 2018年第3期895-899,915,共6页
深度学习在人物动作识别方面已取得较好的成效,但当前仍然需要充分利用视频中人物的外形信息和运动信息。为利用视频中的空间信息和时间信息来识别人物行为动作,提出一种时空双流视频人物动作识别模型。该模型首先利用两个卷积神经网络... 深度学习在人物动作识别方面已取得较好的成效,但当前仍然需要充分利用视频中人物的外形信息和运动信息。为利用视频中的空间信息和时间信息来识别人物行为动作,提出一种时空双流视频人物动作识别模型。该模型首先利用两个卷积神经网络分别抽取视频动作片段空间和时间特征,接着融合这两个卷积神经网络并提取中层时空特征,最后将提取的中层特征输入到3D卷积神经网络来完成视频中人物动作的识别。在数据集UCF101和HMDB51上,进行视频人物动作识别实验。实验结果表明,所提出的基于时空双流的3D卷积神经网络模型能够有效地识别视频人物动作。 展开更多
关键词 人物动作识别 时空模型 深度学习 卷积神经网络 视频挖掘
在线阅读 下载PDF
基于深度学习的粮食产量预测模型研究 被引量:1
14
作者 郭文锋 《现代农业科技》 2024年第24期197-200,共4页
粮食产量受到气候、经济等多重因素的影响,具有非线性、非平稳等特性,给产量预测带来一定的困难。准确预测粮食产量有助于稳定粮食生产、保障国家粮食安全。以1978—2022年全国粮食产量数据为例,预测2020—2022年的粮食产量。首先采用... 粮食产量受到气候、经济等多重因素的影响,具有非线性、非平稳等特性,给产量预测带来一定的困难。准确预测粮食产量有助于稳定粮食生产、保障国家粮食安全。以1978—2022年全国粮食产量数据为例,预测2020—2022年的粮食产量。首先采用经验模态分解(empirical mode decomposition,EMD)算法对影响粮食产量的变量进行分解,然后采用主成分分析(principal components analysis,PCA)方法对分解后的变量进行降维,最后使用长短期记忆网络(long short term memory networks,LSTM)模型对粮食产量进行预测。结果表明,LSTM模型、PCA-LSTM模型、EMD-LSTM模型和EMD-PCA-LSTM模型对粮食产量预测的平均绝对百分比误差分别为1.37%、0.97%、1.11%和0.79%,以EMD-PCA-LSTM模型的粮食产量预测结果最优,可作为一种新的粮食产量预测方法。 展开更多
关键词 粮食产量 时间序列 深度学习 预测模型
在线阅读 下载PDF
基于时空深度学习模型的数值降水预报后处理 被引量:3
15
作者 郑超昊 尹志伟 +3 位作者 曾钢锋 许月萍 周鹏 刘莉 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第9期1756-1765,共10页
为了提高降水预报的精度和分辨率,以浙江省椒江流域为研究对象,使用CMA-CMORPH降水网格数据集和ECMWF数值降水预报产品,提出基于深度学习的降水后处理模型CNN-LSTM.探讨在不同预报时效的后处理前后降水预报的精度变化,评估降水预报对典... 为了提高降水预报的精度和分辨率,以浙江省椒江流域为研究对象,使用CMA-CMORPH降水网格数据集和ECMWF数值降水预报产品,提出基于深度学习的降水后处理模型CNN-LSTM.探讨在不同预报时效的后处理前后降水预报的精度变化,评估降水预报对典型暴雨事件的预报能力.结果表明:CNN-LSTM能够显著提升原始降水预报的精度,均方根误差从6.0 mm下降为3.0 mm,相关系数从0.6上升至0.9.2起台风事件后处理的降水预报在椒江流域逐6 h面雨量误差均不超过10%.经过雨季后处理的TS评分集中于0.90;并且在各降水等级表现均好于后处理前,小雨TS评分从不足0.80提升至0.91,中雨的TS评分从不足0.50提升至0.60. 展开更多
关键词 ECMWF 时空后处理模型 深度学习 降水预报
在线阅读 下载PDF
深度学习在时空序列预测中的应用综述 被引量:34
16
作者 刘博 王明烁 +2 位作者 李永 陈洪丽 李建强 《北京工业大学学报》 CAS CSCD 北大核心 2021年第8期925-941,共17页
对深度学习模型应用于时空序列预测的最新进展进行总结.首先介绍时空序列数据的属性及类型,并进行相应的实例化与表示.接着针对时空序列数据存在的3个问题分别提出相应的数据预处理方法,对基于传统参数模型、传统机器学习模型以及深度... 对深度学习模型应用于时空序列预测的最新进展进行总结.首先介绍时空序列数据的属性及类型,并进行相应的实例化与表示.接着针对时空序列数据存在的3个问题分别提出相应的数据预处理方法,对基于传统参数模型、传统机器学习模型以及深度学习模型的时空序列预测方法逐一阐述并对比分析,为研究者选择模型提供指导,之后总结深度学习模型在不同领域内对时空序列预测的应用.最后指出当前研究的不足以及时空序列预测进一步的研究方向. 展开更多
关键词 时空序列数据 时空序列预测 深度学习 卷积神经网络 循环神经网络 特征选择
在线阅读 下载PDF
基于深度学习的时空序列预测方法综述 被引量:9
17
作者 潘志松 黎维 《数据采集与处理》 CSCD 北大核心 2021年第3期436-448,共13页
随着数据采集技术的蓬勃发展,各个领域的时空数据不断累积,迫切需要探索高效的时空数据预测方法。深度学习是一种基于人工神经网络的机器学习方法,能有效地处理大规模的复杂数据,因而研究基于深度学习的时空序列预测方法具有十分重要的... 随着数据采集技术的蓬勃发展,各个领域的时空数据不断累积,迫切需要探索高效的时空数据预测方法。深度学习是一种基于人工神经网络的机器学习方法,能有效地处理大规模的复杂数据,因而研究基于深度学习的时空序列预测方法具有十分重要的意义。在这一背景下,针对已有的预测方法进行归纳和总结,首先回顾了深度学习在时空序列预测中的应用背景和发展历程,介绍了时空序列的相关定义、特点及分类;然后按照时空序列数据的类别介绍了基于网格数据的预测方法、基于图数据的预测方法和基于轨迹数据的预测方法;最后总结了上述预测方法,并对当前面临的一些问题及可能的解决方案进行了探讨。 展开更多
关键词 深度学习 数据挖掘 时空数据 时空序列预测
在线阅读 下载PDF
基于Transformer的时间序列预测方法综述 被引量:3
18
作者 陈嘉俊 刘波 +2 位作者 林伟伟 郑剑文 谢家晨 《计算机科学》 北大核心 2025年第6期96-105,共10页
时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制... 时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制,在自然语言处理与计算机视觉领域取得突破,也开始拓展至时间序列预测领域并取得显著成果。因此,探究如何将Transformer高效运用于时间序列预测,成为推动该领域发展的关键。首先,介绍了时间序列的特性,阐述了时间序列预测的常见任务类别及评估指标。接着,深入解析Transformer的基本架构,并挑选了近年来在时间序列预测中广受关注的Transfo-rmer衍生模型,从模块及架构层面进行分类,并分别从问题解决、创新点及局限性3个维度进行比较和分析。最后,进一步探讨了时间序列预测Transformer在未来可能的研究方向。 展开更多
关键词 时间序列 Transformer模型 深度学习 注意力机制 预测
在线阅读 下载PDF
基于时空序列的Conv-LSTM航班延误预测模型 被引量:9
19
作者 屈景怡 杨柳 +1 位作者 陈旭阳 王茜 《计算机应用》 CSCD 北大核心 2022年第10期3275-3282,共8页
精准的航班延误预测结果可以为大面积航班延误的预防提供巨大的参考价值。航班延误预测是在特定空间下做时间序列预测,然而目前已有预测方法多为两种或多种算法的结合,存在算法间的融合问题。针对上述问题,提出了一种综合考虑时空序列... 精准的航班延误预测结果可以为大面积航班延误的预防提供巨大的参考价值。航班延误预测是在特定空间下做时间序列预测,然而目前已有预测方法多为两种或多种算法的结合,存在算法间的融合问题。针对上述问题,提出了一种综合考虑时空序列的卷积长短时记忆(Conv-LSTM)网络航班延误预测模型。所提模型在长短时记忆(LSTM)网络提取时间特征的基础上,将网络的输入和权重矩阵进行卷积来提取空间特征,从而充分利用数据集包含的时间和空间信息。实验结果表明,与LSTM、仅考虑空间信息的卷积神经网络(CNN)模型相比,Conv-LSTM模型的准确率分别提高了0.65个百分点和2.36个百分点。由此可见,同时考虑时空特性可以在航班延误问题中获得更精确的预测结果。此外,基于所提模型设计并实现了基于浏览器/服务器(B/S)架构的航班延误分析系统,并且该系统也可以应用于空中交通管理局流量控制中心。 展开更多
关键词 航班延误预测 时空序列 深度学习 卷积长短时记忆网络 气象信息 航班信息
在线阅读 下载PDF
基于深度学习的高时空分辨率降水临近预报方法 被引量:5
20
作者 方巍 齐媚涵 《地球科学与环境学报》 CAS 北大核心 2023年第3期706-718,共13页
降水临近预报在强对流天气监测预警中具有重要地位,对于防灾减灾至关重要。在气象业务中,主要采用雷达回波外推方法解决高时空分辨率的临近预报问题。针对传统雷达回波外推方法中普遍存在的资料信息利用率不足和预报准确率低的问题,利... 降水临近预报在强对流天气监测预警中具有重要地位,对于防灾减灾至关重要。在气象业务中,主要采用雷达回波外推方法解决高时空分辨率的临近预报问题。针对传统雷达回波外推方法中普遍存在的资料信息利用率不足和预报准确率低的问题,利用上海地区多年的高时空分辨率天气雷达探测资料,基于数据驱动的深度学习方法进行雷达回波外推,提出了一种新的降水临近预报模型——SwinAt-UNet模型。该预报模型通过融合UNet模型和Swin Transformer结构捕捉历史天气雷达探测资料中的短期和长期动态变化特征,可以自适应地学习潜在的雷达回波生消演变规律。此外,为提高模型的泛化能力和预报准确率,引入深度可分离卷积和卷积块注意力模块。结果表明:在不同基本反射率阈值下,SwinAt-UNet模型的预报准确率均高于UNet、SmaAt-UNet、TransUNet和AA-TransUNet模型;在45 dBZ的基本反射率阈值下,SwinAt-UNet模型临界成功指数提高了13%,同时在预报时效上具有一定的优越性;SwinAt-UNet模型外推图像具有更加清晰的边缘和细节性纹理,对降水范围、移动方向和强度变化的预测更为准确。 展开更多
关键词 降水临近预报 强对流天气 深度学习 雷达回波外推 SwinAt-UNet模型 时空分辨率 天气雷达探测
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部