期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
时空域上下文学习的视频多帧质量增强方法
被引量:
5
1
作者
佟骏超
吴熙林
丁丹丹
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2019年第12期2506-2513,共8页
卷积神经网络(CNN)在视频增强方向取得了巨大的成功。现有的视频增强方法主要在空域探索图像内像素的相关性,忽略了连续帧之间的时域相似性。针对上述问题,提出一种基于时空域上下文学习的多帧质量增强方法(STMVE),即利用当前帧以及相...
卷积神经网络(CNN)在视频增强方向取得了巨大的成功。现有的视频增强方法主要在空域探索图像内像素的相关性,忽略了连续帧之间的时域相似性。针对上述问题,提出一种基于时空域上下文学习的多帧质量增强方法(STMVE),即利用当前帧以及相邻多帧图像共同增强当前帧的质量。首先根据时域多帧图像直接预测得到当前帧的预测帧,然后利用预测帧对当前帧进行增强。其中,预测帧通过自适应可分离的卷积神经网络(ASCNN)得到;在后续增强中,设计了一种多帧卷积神经网络(MFCNN),利用早期融合架构来挖掘当前帧及其预测帧的时空域相关性,最终得到增强的当前帧。实验结果表明,所提出的STMVE方法在量化参数值37、32、27、22上,相对于H.265/HEVC,分别获得0.47、0.43、0.38、0.28 dB的性能增益;与多帧质量增强(MFQE)方法相比,平均获得0.17 dB的增益。
展开更多
关键词
时空域上下文学习
多帧质量增强(MFQE)
卷积神经网络(CNN)
残差
学习
预测帧
在线阅读
下载PDF
职称材料
题名
时空域上下文学习的视频多帧质量增强方法
被引量:
5
1
作者
佟骏超
吴熙林
丁丹丹
机构
杭州师范大学信息科学与工程学院
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2019年第12期2506-2513,共8页
基金
浙江省自然科学基金(LY20F010013)
国家重点研发计划(2017YFB1002803)~~
文摘
卷积神经网络(CNN)在视频增强方向取得了巨大的成功。现有的视频增强方法主要在空域探索图像内像素的相关性,忽略了连续帧之间的时域相似性。针对上述问题,提出一种基于时空域上下文学习的多帧质量增强方法(STMVE),即利用当前帧以及相邻多帧图像共同增强当前帧的质量。首先根据时域多帧图像直接预测得到当前帧的预测帧,然后利用预测帧对当前帧进行增强。其中,预测帧通过自适应可分离的卷积神经网络(ASCNN)得到;在后续增强中,设计了一种多帧卷积神经网络(MFCNN),利用早期融合架构来挖掘当前帧及其预测帧的时空域相关性,最终得到增强的当前帧。实验结果表明,所提出的STMVE方法在量化参数值37、32、27、22上,相对于H.265/HEVC,分别获得0.47、0.43、0.38、0.28 dB的性能增益;与多帧质量增强(MFQE)方法相比,平均获得0.17 dB的增益。
关键词
时空域上下文学习
多帧质量增强(MFQE)
卷积神经网络(CNN)
残差
学习
预测帧
Keywords
spatial-temporal context learning
multi-frame quality enhancement(MFQE)
convolutional neural network(CNN)
residual learning
virtual frame
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
时空域上下文学习的视频多帧质量增强方法
佟骏超
吴熙林
丁丹丹
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2019
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部