期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
基于时空图卷积网络的矿区人员健康状态识别算法
1
作者 王惠伟 周超逸 +2 位作者 张兰峰 孙延钊 刘娜 《金属矿山》 北大核心 2025年第2期206-210,共5页
随着矿区工作环境的复杂化和危险性增加,实现矿区人员健康状态准确监测和识别很有必要。然而,传统的健康状态识别方法通常依赖于手工提取的特征信息,忽略了矿区人员的时空关系和动态变化。为此,提出了一种基于时空图卷积网络的矿区人员... 随着矿区工作环境的复杂化和危险性增加,实现矿区人员健康状态准确监测和识别很有必要。然而,传统的健康状态识别方法通常依赖于手工提取的特征信息,忽略了矿区人员的时空关系和动态变化。为此,提出了一种基于时空图卷积网络的矿区人员健康状态识别算法。该算法首先利用时空图卷积网络对矿区人员的骨架数据进行特征提取,同时考虑了人员之间的拓扑结构和时间序列的变化;然后采用长短期记忆网络(Long Short-Term Mem-ory,LSTM)对提取的特征进行序列建模;最后通过全连接层进行健康状态分类。在实际矿区人员健康状态数据集上进行了试验,结果表明:所提算法在健康状态识别的准确率和F1值等指标上均优于支持向量机(Support Vector Ma-chine,SVM)、长短期记忆网络(LSTM)、图卷积网络(Graph Convolutional Network,GCN)、动态卷积网络(Dynamic Graph Convolutional Network,DGCN)等算法,证明了该算法的有效性和可行性。 展开更多
关键词 矿山安全 健康状态识别 时空图卷积网络 长短期记忆网络
在线阅读 下载PDF
基于时空关联的时空图卷积神经网络城市轨道交通进站客流预测
2
作者 王润祺 郝妍熙 +2 位作者 胡华 方勇 刘志钢 《城市轨道交通研究》 北大核心 2024年第9期91-96,共6页
[目的]准确的短时客流预测对于提高超大规模城市轨道交通线网的运营和管理效率具有重要意义,而目前现有研究对于深度挖掘时空关联性仍不够充分,为此基于短时客流的时空规律提出了基于客流时空关联特征的STGCN(时空图卷积神经网络)模型。... [目的]准确的短时客流预测对于提高超大规模城市轨道交通线网的运营和管理效率具有重要意义,而目前现有研究对于深度挖掘时空关联性仍不够充分,为此基于短时客流的时空规律提出了基于客流时空关联特征的STGCN(时空图卷积神经网络)模型。[方法]首先,通过切比雪夫图卷积网络捕捉超大规模城市轨道交通网络的空间相关性,借助门控循环单元挖掘多时空关联特征下客流的时间相关性;然后,分析待预测车站历史客流数据相关性及OD(起讫点)客流数据相关性,以深入提取时空相关性;最后,结合客流时空关联特征建立STGCN模型。[结果及结论]以上海地铁江苏路站为例,进行短时进站客流预测,结果表明采用时空关联特征参数的预测结果较未加入特征参数的预测精度提高了16%,预测效果较优。 展开更多
关键词 城市轨道交通 短时进站客流预测 时空关联性 时空图卷积神经网络
在线阅读 下载PDF
基于双重注意力时空图卷积网络的行人轨迹预测 被引量:1
3
作者 向晓倩 陈璟 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2586-2595,共10页
当前行人轨迹预测研究面临两大挑战:1)如何有效提取行人前后帧之间的时空相关性;2)如何避免在轨迹采样过程中受到采样偏差的影响而导致性能下降.针对以上问题,提出基于双重注意力时空图卷积网络与目的抽样网络的行人轨迹预测模型.利用... 当前行人轨迹预测研究面临两大挑战:1)如何有效提取行人前后帧之间的时空相关性;2)如何避免在轨迹采样过程中受到采样偏差的影响而导致性能下降.针对以上问题,提出基于双重注意力时空图卷积网络与目的抽样网络的行人轨迹预测模型.利用时间注意力捕获行人前后帧的关联性,利用空间注意力获取周围行人之间的相关性,通过时空图卷积进一步提取行人之间的时空相关性.引入可学习的抽样网络解决随机抽样导致的分布不均匀的问题.大量实验表明,在ETH和UCY数据集上,新方法的精度与当前最先进的方法相当,且模型参数量减少1.65×10^(4),推理时间缩短0.147 s;在SDD数据集上精度虽略有下降,但模型参数量减少了3.46×10^(4),展现出良好的性能平衡,能为行人轨迹预测提供新的有效途径. 展开更多
关键词 轨迹预测 深度学习 卷积网络 时空图卷积 时间注意力 空间注意力 轨迹采样
在线阅读 下载PDF
基于可拓展自注意力时空图卷积神经网络的用户轨迹识别模型
4
作者 雷天亮 吉立新 +2 位作者 王庚润 刘树新 巫岚 《电子学报》 EI CAS CSCD 北大核心 2024年第11期3741-3750,共10页
用户轨迹识别作为一项重要的时空数据挖掘任务,广泛应用于基于位置的个性化服务推荐、行程规划、犯罪行为检测和目标跟踪等领域,但依然面临预测精度不高的问题,主要原因是轨迹数据低采样且稀疏、轨迹类别数量巨大等.针对上述问题提出了... 用户轨迹识别作为一项重要的时空数据挖掘任务,广泛应用于基于位置的个性化服务推荐、行程规划、犯罪行为检测和目标跟踪等领域,但依然面临预测精度不高的问题,主要原因是轨迹数据低采样且稀疏、轨迹类别数量巨大等.针对上述问题提出了基于可拓展自注意力时空图卷积神经网络的用户轨迹识别模型(Expandable Self-Attention Spatio-Temporal Graph Convolutional Neural Networks,ESAST-GCNN),该模型采用时空图卷积神经网络方式,深度挖掘时序特征与空间特征关系,并进行预测与拓展,结合自注意力机制获取用户轨迹特征向量内部相关性,最终根据该特征向量进行用户轨迹身份识别.在两个真实数据集上进行测试后发现,ESAST-GCNN相较于TULER-GRU(TUL via Embedding and RNN)在Geolife与Gowalla中准确率分别提高了13.95%、10.63%,实验结果表明ESAST-GCNN优于其他模型,识别效果更好,适用范围更广. 展开更多
关键词 用户轨迹识别 时空图卷积神经网络 自注意力机制 深度学习 时空序列
在线阅读 下载PDF
共享单车需求量的自适应时空图卷积网络预测
5
作者 罗兆杰 《长江信息通信》 2024年第9期36-39,共4页
为解决共享单车分布不平衡问题,基于纽约市Citi Bike共享单车数据,构建无先验道路空间信息的自适应时空图卷积网络(AG-TCNBiLSTM)用于共享单车需求量预测。模型首先构建连通图和交互图表达长期依赖关系,通过多头图注意力网络挖掘短期依... 为解决共享单车分布不平衡问题,基于纽约市Citi Bike共享单车数据,构建无先验道路空间信息的自适应时空图卷积网络(AG-TCNBiLSTM)用于共享单车需求量预测。模型首先构建连通图和交互图表达长期依赖关系,通过多头图注意力网络挖掘短期依赖关系,融合长短期依赖图得到最优图结构;其次,整合ChebNet、TCN和Bi-LSTM捕捉时空依赖性。利用共享单车数据集对需求量的预测结果表明,AG-TCNBiLSTM相较于其它基线模型,预测效果最佳,验证了其在捕捉交通网络动态变化的有效性。 展开更多
关键词 共享单车 需求量预测 图注意力网络 自适应时空图卷积
在线阅读 下载PDF
基于时空图卷积网络改进的人体行为识别方法 被引量:1
6
作者 王松 《楚雄师范学院学报》 2022年第3期91-100,共10页
针对目前利用时空图卷积网络ST-GCN行为识别模型进行人体行为识别准确性有待提高和如何更好地学习骨骼数据中关节点和骨架边所表达的动作特征等问题,改进现有的时空图卷积网络(ST-GCN)行为识别模型。首先,使用有向图来表示关节点和骨骼... 针对目前利用时空图卷积网络ST-GCN行为识别模型进行人体行为识别准确性有待提高和如何更好地学习骨骼数据中关节点和骨架边所表达的动作特征等问题,改进现有的时空图卷积网络(ST-GCN)行为识别模型。首先,使用有向图来表示关节点和骨骼边的信息以及它们之间的依赖关系,提取相邻帧的关节位置差异作为运动信息;其次,使用双流框架分别学习运动信息和空间信息,进行融合提高识别性能;最后,使用注意力权重矩阵让图的拓扑结构具有自适应性,增大节点的感受野,使网络能够学习到远端关节之间的语义信息,更好的捕捉动作特征。将所提出的方法在NTURGB+D数据集上进行实验。研究结果表明,采用基于时空图卷积网络改进的人体行为识别方法在数据集上达到了96%的准确率,与现有ST-GCN模型相比,准确率提高了。此方法可进一步促进人体行为识别技术在智能家居、智能监控安防、人机交互、基于内容的视频检索、智慧城市发展等领域的广泛应用。 展开更多
关键词 人体行为识别 时空图卷积神经网络 有向图网络 注意力机制 双流框架
在线阅读 下载PDF
基于潜在特征的时空图卷积网络轨迹预测方法
7
作者 姚宝珍 吴粤隆 +3 位作者 荆治家 陈思轩 仲潜 刘振国 《交通运输研究》 2023年第6期12-20,共9页
为提高车辆轨迹预测精度,提出一种基于潜在特征的时空图卷积网络轨迹预测方法CRSTGCN。首先,该方法特别添加了一个时间上更早、更长的历史轨迹作为输入,并基于该输入建立了潜在特征编码层。然后,CR-STGCN将该潜在特征编码层编码的潜在... 为提高车辆轨迹预测精度,提出一种基于潜在特征的时空图卷积网络轨迹预测方法CRSTGCN。首先,该方法特别添加了一个时间上更早、更长的历史轨迹作为输入,并基于该输入建立了潜在特征编码层。然后,CR-STGCN将该潜在特征编码层编码的潜在特征与时空图卷积编码的机动性与动力性特征拼接融合,并采用两层门控循环单元(Gate Recurrent Unit,GRU)解码出预测轨迹。最后,将采用时空图卷积编码和两层GRU解码的预测轨迹模型STGCN与CR-STGCN在NGSIM数据集上进行对比。结果表明,CR-STGCN在不同机动类型、交通密度场景下的预测精度均优于STGCN,证明了这一方法应用于车辆轨迹预测的有效性,为轨迹预测特征选取提供了新思路。 展开更多
关键词 智能交通 时空图卷积网络 轨迹预测 潜在特征 交通密度
在线阅读 下载PDF
基于软邻接时空图卷积神经网络的动作识别算法
8
作者 张贺 翟正利 《信息技术与信息化》 2023年第2期183-186,共4页
动作识别被广泛应用于诸多领域,如智能监控、人机交互、智能医疗、机器人技术等。近年来,随着智慧城市建设的不断发展,人类动作识别的相关研究越来越受到学术界的关注。然而目前的基于神经网络的动作识别算法普遍存在着准确率低,鲁棒性... 动作识别被广泛应用于诸多领域,如智能监控、人机交互、智能医疗、机器人技术等。近年来,随着智慧城市建设的不断发展,人类动作识别的相关研究越来越受到学术界的关注。然而目前的基于神经网络的动作识别算法普遍存在着准确率低,鲁棒性差等问题。虽然这种传统的方法取得了良好的效果,但这种方法的效果与实际应用之间依然存在差距。为了进一步解决这些问题,设计了一个更有效的动作识别模型,即基于软邻接的时空图卷积神经网络的动作识别算法(spatial temporal soft adjacency graph convolution network, STS-GCN)。首先,将图卷积网络扩展到时间域,并在骨架节点之间引入潜在的相邻关系,从而可以自动学习空间时间维度上的隐藏动作信息;其次,模型引入了一种简易的空间注意机制,使其具有鉴别具有判别力的空间区域的能力,从而获得更好的识别效果;最后对该模型在NTU-RGB+D数据集上进行了实验。实验结果表明,与其他几个现有模型的结果相比,模型测试的识别准确率有所提高。这说明了引入软邻接矩阵的时空图卷积神经网络有利于模型提高动作识别算法的效果。 展开更多
关键词 软邻接 时空图卷积神经网络 动作识别 注意力机制 姿态估计
在线阅读 下载PDF
基于图卷积网络的儿童坐姿检测学习桌椅设计方法研究 被引量:3
9
作者 张飞宇 兰扬 +4 位作者 朱伟 宋玲 王张恒 李芳 孙德林 《家具与室内装饰》 北大核心 2024年第1期96-100,共5页
儿童长期处于伏案学习的状态,不良坐姿对儿童生长发育容易造成严重影响,对儿童坐姿的矫正已刻不容缓。通过对儿童在学习桌椅上的坐姿行为调研,基于OpenPose姿态估计算法进行坐姿检测分析,引入ST-GCN模型进行坐姿识别与评判,结果表明:使... 儿童长期处于伏案学习的状态,不良坐姿对儿童生长发育容易造成严重影响,对儿童坐姿的矫正已刻不容缓。通过对儿童在学习桌椅上的坐姿行为调研,基于OpenPose姿态估计算法进行坐姿检测分析,引入ST-GCN模型进行坐姿识别与评判,结果表明:使用ST-GCN模型能够快速准确识别儿童的八种坐姿,并根据识别结果对儿童进行有效的错误坐姿提示,其Macro-F1和Micro-F1评价指标分别提高了6.8%和7.4%。同时表明儿童坐姿矫正在自适应儿童学习桌椅上应用的可行性及有效性,可为智能儿童课桌椅的设计提供技术支撑。 展开更多
关键词 时空图卷积网络(st-gcn) 儿童坐姿识别 学习桌椅
在线阅读 下载PDF
基于时空卷积的机会网络拓扑预测
10
作者 舒坚 史佳伟 +1 位作者 刘琳岚 Manar Al-Kali 《通信学报》 EI CSCD 北大核心 2023年第3期145-156,共12页
机会网络拓扑的高动态性导致其拓扑预测极具挑战。现有拓扑预测方法主要关注网络长期时空依赖,忽视了短期时空特征。综合考虑机会网络长短期时空依赖关系,提出一种基于动态时间规整算法与时空卷积的机会网络拓扑预测方法(DTW-STC)。基... 机会网络拓扑的高动态性导致其拓扑预测极具挑战。现有拓扑预测方法主要关注网络长期时空依赖,忽视了短期时空特征。综合考虑机会网络长短期时空依赖关系,提出一种基于动态时间规整算法与时空卷积的机会网络拓扑预测方法(DTW-STC)。基于动态时间规整算法确定切片时长,将机会网络切分为快照,用快照的链路状态矩阵表征其拓扑信息;采用时序卷积神经网络获取短期时序特征,结合网络变化构建时空图表征短期时空关系,利用图卷积运算提取网络的短期时空特征,经过多次卷积的堆叠,得到网络长短期时空特征;基于自编码器结构实现向量空间切换,预测下一时刻网络拓扑。3个真实机会网络数据集ITC、MIT以及Asturias-er上的实验结果表明,DTW-STC方法的预测性能优于基线方法。 展开更多
关键词 机会网络 拓扑预测 时序卷积 卷积 时空图
在线阅读 下载PDF
应用STGCN时空建模的地震波阻抗反演方法
11
作者 王泽峰 赵海波 +3 位作者 杨懋新 王团 许辉群 毛伟建 《石油地球物理勘探》 北大核心 2025年第1期43-53,共11页
现今,深度学习地震波阻抗反演方法通常是通过低维度的时序建模,忽略了空间构造拓扑结构信息,导致反演精度较低。针对此问题,提出了一种基于STGCN(时空图卷积神经网络)时空建模的地震波阻抗反演方法。该方法考虑到地震数据的空间构造拓... 现今,深度学习地震波阻抗反演方法通常是通过低维度的时序建模,忽略了空间构造拓扑结构信息,导致反演精度较低。针对此问题,提出了一种基于STGCN(时空图卷积神经网络)时空建模的地震波阻抗反演方法。该方法考虑到地震数据的空间构造拓扑结构及互相关性,使用马氏距离对地震数据进行空间邻近度的加权处理建立邻接矩阵;进一步通过切比雪夫多项式扩大空间感受野的同时减少参数量,高效地提取地震数据的空间构造特征,同时利用门控循环单元捕获其时序相关性;最后构建时空图卷积单元实现基于STGCN的地震数据与波阻抗在时间和空间两个维度的映射。模型测试及实际资料反演结果表明,该方法在提高反演精度的同时对噪声具有一定的适应性,并可以很好的体现地层的横向变化。 展开更多
关键词 地震波阻抗反演 深度学习 时空建模 时空图卷积神经网络
在线阅读 下载PDF
一种改进STGCN的深地时空域地震子波提取方法
12
作者 戴永寿 孙家钊 +3 位作者 李泓浩 颜廷尚 孙伟峰 左琳 《石油物探》 CSCD 北大核心 2024年第6期1111-1125,1137,共16页
地震子波的准确提取可有效提高全波形反演和偏移成像等方法的准确性,对储层预测和油气分析具有重要意义。由于深层能量衰减和复杂地质构造,地震子波不仅具有时变特性,同时也具有不可忽略的空变特性。而传统时变子波提取方法仅通过单道... 地震子波的准确提取可有效提高全波形反演和偏移成像等方法的准确性,对储层预测和油气分析具有重要意义。由于深层能量衰减和复杂地质构造,地震子波不仅具有时变特性,同时也具有不可忽略的空变特性。而传统时变子波提取方法仅通过单道地震记录提取时变子波,忽略了多道地震记录之间子波的空间变化。同时,传统时空域子波提取方法,如经验模态分解(EMD)方法,对测井资料等先验信息依赖程度较高,实际应用范围受限。深度学习为时空域子波提取提供了新的思路,针对以上问题,提出了一种改进时空图卷积神经网络(STGCN)的时空域子波提取方法。首先,根据目标区地震数据分布特征与非平稳性质,建立以非平稳地震剖面为输入,时空域子波为标签的合成训练数据,再利用传统EMD时变子波提取方法逐道提取目标区子波,有针对性地构建以目标区地震剖面为输入,目标区时空域子波为标签的实际训练数据。最后,利用两种训练数据对改进后的STGCN进行训练,使其能够融合提取的子波时空特征,从而实现目标区时空域子波的有效提取。合成数据和实际地震数据的处理结果表明,该方法对于深地时空域子波的提取有效且准确,相较于传统方法更具优越性,具有较好的实际应用价值。 展开更多
关键词 深度学习 时空域子波提取 时空图卷积神经网络 时空特征
在线阅读 下载PDF
基于时空注意力机制的网约车出行需求预测模型
13
作者 王宁 马洪恩 《汽车工程学报》 2024年第5期898-910,共13页
解决网约车运营中的乘客出行需求预测问题,以降低车辆空载率、减少乘客等待时间。在考虑乘客出行需求的动态时空依赖性的基础上,提出一种基于空间数据可视化和格兰杰因果检验的乘客出行需求空间依赖性分析方法,并结合卷积神经网络和注... 解决网约车运营中的乘客出行需求预测问题,以降低车辆空载率、减少乘客等待时间。在考虑乘客出行需求的动态时空依赖性的基础上,提出一种基于空间数据可视化和格兰杰因果检验的乘客出行需求空间依赖性分析方法,并结合卷积神经网络和注意力机制,建立了一种基于注意力机制的时空图卷积神经网络模型来预测乘客出行需求。实例研究表明,本模型能有效捕获乘客出行需求时空依赖性的动态特征,提升模型的预测性能,具有较高的准确性和实用性。 展开更多
关键词 出行需求预测 注意力机制 时空依赖性 时空图卷积神经网络
在线阅读 下载PDF
基于通道注意力机制增强DGNN的外骨骼机器人步态相位预测 被引量:1
14
作者 颜建军 许赢家 +2 位作者 林越 金理 江金林 《华东理工大学学报(自然科学版)》 北大核心 2025年第1期110-118,共9页
利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,... 利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,采集人体下肢的行走步态数据并构建人体下肢的骨架模型;之后,建立了基于CA-DGNN步态相位的预测模型,提取人体步态相位的运动特征,并基于当前时刻数据预测未来时刻的步态相位;最后,探讨了滑动窗口大小对算法性能的影响。本文提高了外骨骼机器人步态相位预测的准确性和鲁棒性,为此方向研究提供了一种新的思路和方法。 展开更多
关键词 步态相位预测 惯性传感器 骨架 时空图卷积网络 通道注意力机制
在线阅读 下载PDF
基于改进STGCN与N-BEATS的风功率超短期预测
15
作者 程旭初 刘景霞 康荣凯 《现代电子技术》 北大核心 2025年第8期115-121,共7页
精准的风功率预测对电网调度具有重大意义,针对现有预测方法中数据特征提取不充分、输入序列过长时产生梯度消失和预测精度低的问题,提出一种基于改进时空图卷积(STGCN)与神经基扩展分析(N-BEATS)模型的组合预测模型,该方法通过充分提... 精准的风功率预测对电网调度具有重大意义,针对现有预测方法中数据特征提取不充分、输入序列过长时产生梯度消失和预测精度低的问题,提出一种基于改进时空图卷积(STGCN)与神经基扩展分析(N-BEATS)模型的组合预测模型,该方法通过充分提取数据时空特征来提高预测精度。首先,利用STGCN对多元输入序列进行深度特征提取,充分挖掘风机SCADA数据中的时空潜在关系;同时,为了进一步提高预测精度,通过构建序列分解模块与多分辨率卷积对STGCN模型进行改进,使其能够更好地适应风电数据的复杂特性;然后,神经基扩展分析(N-BEATS)新型神经网络对STGCN提取的时空信息数据进行时序关系分析,得到最终预测结果;最后,以内蒙古某风场SCADA数据为例,通过多模型对比实验与自身消融实验验证了所提组合模型策略的有效性以及对STGCN的改进效果。实验结果表明,所设计模型在预测精度上取得了显著的提升,为风电功率预测领域的研究提供了新的思路和方法。 展开更多
关键词 超短期风功率预测 时空图卷积 神经基扩展分析 序列分解 深度特征提取 卷积网络
在线阅读 下载PDF
基于深度学习的人体持有武器识别研究
16
作者 黄兆年 卢龙生 +1 位作者 程朋 李恒 《舰船电子工程》 2025年第3期38-42,共5页
论文提出一种基于改进的时空卷积神经网络加上YOLOv5识别人员是否携带武器的方法,此方法首先从边境的监控录像中提取单帧为单元提取人体骨架点信息,然后以时空图卷积神经网络为框架聚合多帧图像信息,判别人员动作。再通过YOLOv5和人体... 论文提出一种基于改进的时空卷积神经网络加上YOLOv5识别人员是否携带武器的方法,此方法首先从边境的监控录像中提取单帧为单元提取人体骨架点信息,然后以时空图卷积神经网络为框架聚合多帧图像信息,判别人员动作。再通过YOLOv5和人体骨架检测人员和武器之间的关系,判断运动的人员是否携带武器。最后通过实验验证方法的有效性,结果表明该方法可以充分利用多帧图像中的骨架点之间的时空信息,来准确识别人员运动情况,以及是否携带武器,具有很好的准确率和鲁棒性。 展开更多
关键词 动作识别 武器识别 骨架信息提取 时空图卷积神经网络
在线阅读 下载PDF
基于深度学习的煤矿井下人员不安全行为检测与识别
17
作者 郭孝园 朱美强 +1 位作者 田军 朱贝贝 《工矿自动化》 北大核心 2025年第3期138-147,共10页
针对井下目标发生多尺度变化、运动目标遮挡及目标与环境过于相似等问题,提出了一种基于深度学习的煤矿井下人员不安全行为检测与识别方法。采用自上而下的策略,构建了一种基于自注意力机制的目标检测模型YOLOv5s_swin:在基于自注意力... 针对井下目标发生多尺度变化、运动目标遮挡及目标与环境过于相似等问题,提出了一种基于深度学习的煤矿井下人员不安全行为检测与识别方法。采用自上而下的策略,构建了一种基于自注意力机制的目标检测模型YOLOv5s_swin:在基于自注意力机制的模型Transformer基础上引入滑动窗口操作,得到Swin-Transformer,再利用Swin-Transformer对传统YOLOv5s模型进行改进,得到YOLOv5s_swin。针对井下人员与监控探头间距不定导致的人体检测框多尺度变化问题,在检测出人员目标的基础上,使用高分辨率特征提取网络对人体的关节点进行提取,再通过时空图卷积网络(ST-GCN)进行行为识别。实验结果表明:YOLOv5s_swin的精确度达98.9%,在YOLOv5s的基础上提升了1.5%,推理速度达102帧/s,满足实时性检测要求;高分辨率特征提取网络能够准确提取不同尺度的目标人体关节点,特征通道数更多的HRNet_w48网络性能优于HRNet_w32;在复杂工矿条件下,ST-GCN模型的准确率和召回率都较高,可准确地对矿工行为进行分类,推理速度达31帧/s,满足井下监测需求。 展开更多
关键词 井下不安全行为识别 目标检测 深度学习 自注意力机制 YOLOv5s 高分辨率特征提取网络 时空图卷积网络
在线阅读 下载PDF
基于CIST-GCN的流行病数据分析与预测 被引量:1
18
作者 何宇浩 郑贤伟 《现代信息科技》 2022年第14期30-34,共5页
文章提出了一个基于相关度交互图卷积网络的流行病预测方法,利用各城市的日感染人数变化模拟病毒在不同城市间的传播相似度,并对拓扑图进行加权处理,最后利用时空图卷积网络处理城市网络的空间特征,并对城市的流行病发展状况进行预测。... 文章提出了一个基于相关度交互图卷积网络的流行病预测方法,利用各城市的日感染人数变化模拟病毒在不同城市间的传播相似度,并对拓扑图进行加权处理,最后利用时空图卷积网络处理城市网络的空间特征,并对城市的流行病发展状况进行预测。方法在PeMS-Bay和PeMSD7数据集上实验的MAPE为2.498%和5.640%,优于传统ST-GCN的2.640%和8.822%,同时在PeMSD7上优于参考模型IT-GCN的8.603%,并且在中国33个城市的疫情预测中与真实数据契合度较高,特别是对“突增点”,对各类流行病的预测以及疫情突发状况的预警起到了一定的参考作用。 展开更多
关键词 流行病预测 传播相似度 时空图卷积网络 拓扑图
在线阅读 下载PDF
基于ST-GCN的形体动作质量评估算法分析
19
作者 叶倩文 肖秦琨 李梦茹 《集成电路应用》 2023年第1期98-99,共2页
阐述一种基于时空图卷积的太极拳动作质量评估框架,通过轻量级OpenPose姿态估计获得训练动作的骨架序列数据,然后使用时空图卷积网络(Spatial Temporal Graph Convolutional Network,STGCN)提取动作的时空特征与标准动作的特征对比,利... 阐述一种基于时空图卷积的太极拳动作质量评估框架,通过轻量级OpenPose姿态估计获得训练动作的骨架序列数据,然后使用时空图卷积网络(Spatial Temporal Graph Convolutional Network,STGCN)提取动作的时空特征与标准动作的特征对比,利用孪生网络学习动作的质量分数。 展开更多
关键词 智能算法 姿态估计 时空图卷积网络
在线阅读 下载PDF
基于深度学习的隐私保护方法研究 被引量:1
20
作者 熊婧 杜鹏懿 冯晓荣 《电子产品可靠性与环境试验》 2024年第2期76-81,共6页
准确和实时的轨迹数据发布能够为用户提供最新的交通和路况信息,有助于用户合理规划出行时间和路线,但是,位置信息的不当发布和反向推理容易泄露用户个人信息,甚至危及用户的生命安全。采用差分隐私方法添加的噪声,会导致隐私保护在数... 准确和实时的轨迹数据发布能够为用户提供最新的交通和路况信息,有助于用户合理规划出行时间和路线,但是,位置信息的不当发布和反向推理容易泄露用户个人信息,甚至危及用户的生命安全。采用差分隐私方法添加的噪声,会导致隐私保护在数据发布和有效性方面引入不准确性。为了提高发布数据的准确性和可用性,提出了一种基于深度学习和差分隐私模型的数据发布方法,确保时空轨迹数据的安全发布。首先,设计了一种自顶向下递归划分区域的方法,并根据递归深度的增加,多维度定义隐私预算分配规则;其次,通过时空图卷积网络(T-GCN)提取数据的时间和空间特征预测隐私预算矩阵,并对区域添加Laplace噪声,实现轨迹数据的隐私保护。实验结果表明,在满足ε-差分隐私的前提下,该方法能更合理地实现轨迹的隐私保护。 展开更多
关键词 隐私保护 深度学习 时空图卷积网络 差分隐私 隐私预算预测
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部