期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
基于双注意力时空图卷积神经网络的4D轨迹预测方法
1
作者 匡育衡 王正宁 +2 位作者 王正 石镇瑜 张毓丁 《电子科技大学学报》 北大核心 2025年第5期641-651,共11页
近年来,4D轨迹预测在空中交通管理系统中的重要性正在逐渐增加,以其为核心技术的冲突检测和解决、飞机异常行为监测、密集飞行区域管控等任务的智能化需求也在逐年上升。机场终端区和密集空域的状况错综复杂且不断变化,现有的方法无法... 近年来,4D轨迹预测在空中交通管理系统中的重要性正在逐渐增加,以其为核心技术的冲突检测和解决、飞机异常行为监测、密集飞行区域管控等任务的智能化需求也在逐年上升。机场终端区和密集空域的状况错综复杂且不断变化,现有的方法无法充分捕捉这两个场景下飞机之间的相互作用关系。为了应对这些挑战,提出了基于双注意力的时空图卷积神经网络模型来充分提取飞机之间的潜在时空相关性。该模型利用自注意力机制对邻接矩阵进行重构以便更好地捕捉图节点之间的相关性,并通过图注意力计算提取节点之间的时空特征,最终生成预测轨迹的概率分布。实验结果表明,与现有主流算法相比,利用自注意力机制重构的邻接矩阵和图注意力网络可以随着网络训练不断地优化,从而更好地反应节点之间的潜在关联,提升了4D轨迹预测结果的准确率。 展开更多
关键词 4D轨迹预测 时空图卷积神经网络 自注意力机制 深度学习
在线阅读 下载PDF
基于时空图卷积神经网络的强迫振荡定位与传播预测 被引量:6
2
作者 冯双 彭祥佳 +5 位作者 陈佳宁 陆友文 陈力 洪希 雷家兴 汤奕 《中国电机工程学报》 EI CSCD 北大核心 2024年第4期1298-1309,I0005,共13页
振荡源定位与传播预测是抑制强迫振荡和保证电力系统稳定的关键。现有方法未能充分利用电网的空间拓扑信息和振荡的时序特征,限制了定位和预测的精度。因此,该文提出一种基于时空图卷积神经网络的强迫振荡定位与传播预测方法。首先,根... 振荡源定位与传播预测是抑制强迫振荡和保证电力系统稳定的关键。现有方法未能充分利用电网的空间拓扑信息和振荡的时序特征,限制了定位和预测的精度。因此,该文提出一种基于时空图卷积神经网络的强迫振荡定位与传播预测方法。首先,根据节点特征和拓扑信息构建图数据,考虑到强迫振荡传播的快速性,通过切比雪夫多项式扩大节点空间感受野,提取振荡空间特征。同时,利用门控循环单元网络提取多个节点振荡数据的时序关联,通过时空图卷积单元融合空间和时序特征。然后,将定位与传播预测分别建模为分类和回归问题,训练时空图卷积神经网络模型。算例分析表明,所提方法具有更高的准确率,且在噪声和部分节点数据缺失的情况下依然具有较好的性能。 展开更多
关键词 强迫振荡 振荡源定位 振荡传播 时空图卷积神经网络
在线阅读 下载PDF
基于时空关联的时空图卷积神经网络城市轨道交通进站客流预测
3
作者 王润祺 郝妍熙 +2 位作者 胡华 方勇 刘志钢 《城市轨道交通研究》 北大核心 2024年第9期91-96,共6页
[目的]准确的短时客流预测对于提高超大规模城市轨道交通线网的运营和管理效率具有重要意义,而目前现有研究对于深度挖掘时空关联性仍不够充分,为此基于短时客流的时空规律提出了基于客流时空关联特征的STGCN(时空图卷积神经网络)模型。... [目的]准确的短时客流预测对于提高超大规模城市轨道交通线网的运营和管理效率具有重要意义,而目前现有研究对于深度挖掘时空关联性仍不够充分,为此基于短时客流的时空规律提出了基于客流时空关联特征的STGCN(时空图卷积神经网络)模型。[方法]首先,通过切比雪夫图卷积网络捕捉超大规模城市轨道交通网络的空间相关性,借助门控循环单元挖掘多时空关联特征下客流的时间相关性;然后,分析待预测车站历史客流数据相关性及OD(起讫点)客流数据相关性,以深入提取时空相关性;最后,结合客流时空关联特征建立STGCN模型。[结果及结论]以上海地铁江苏路站为例,进行短时进站客流预测,结果表明采用时空关联特征参数的预测结果较未加入特征参数的预测精度提高了16%,预测效果较优。 展开更多
关键词 城市轨道交通 短时进站客流预测 时空关联性 时空图卷积神经网络
在线阅读 下载PDF
基于可拓展自注意力时空图卷积神经网络的用户轨迹识别模型
4
作者 雷天亮 吉立新 +2 位作者 王庚润 刘树新 巫岚 《电子学报》 EI CAS CSCD 北大核心 2024年第11期3741-3750,共10页
用户轨迹识别作为一项重要的时空数据挖掘任务,广泛应用于基于位置的个性化服务推荐、行程规划、犯罪行为检测和目标跟踪等领域,但依然面临预测精度不高的问题,主要原因是轨迹数据低采样且稀疏、轨迹类别数量巨大等.针对上述问题提出了... 用户轨迹识别作为一项重要的时空数据挖掘任务,广泛应用于基于位置的个性化服务推荐、行程规划、犯罪行为检测和目标跟踪等领域,但依然面临预测精度不高的问题,主要原因是轨迹数据低采样且稀疏、轨迹类别数量巨大等.针对上述问题提出了基于可拓展自注意力时空图卷积神经网络的用户轨迹识别模型(Expandable Self-Attention Spatio-Temporal Graph Convolutional Neural Networks,ESAST-GCNN),该模型采用时空图卷积神经网络方式,深度挖掘时序特征与空间特征关系,并进行预测与拓展,结合自注意力机制获取用户轨迹特征向量内部相关性,最终根据该特征向量进行用户轨迹身份识别.在两个真实数据集上进行测试后发现,ESAST-GCNN相较于TULER-GRU(TUL via Embedding and RNN)在Geolife与Gowalla中准确率分别提高了13.95%、10.63%,实验结果表明ESAST-GCNN优于其他模型,识别效果更好,适用范围更广. 展开更多
关键词 用户轨迹识别 时空图卷积神经网络 自注意力机制 深度学习 时空序列
在线阅读 下载PDF
基于动态混合时空图卷积网络的轨道交通站点短时客流预测模型
5
作者 谢余晨 杨静 +2 位作者 李欣然 张红亮 周浪雅 《铁道运输与经济》 北大核心 2025年第10期130-140,共11页
城市轨道交通站点短时客流预测是交通管理和人群调控的关键环节。为解决捕获客流动态空间相关性时存在的复杂度高及过拟合问题,提出一种基于Tucker张量分解的动态混合时空图卷积网络模型。该模型由多个时间注意力模块与混合图卷积模块... 城市轨道交通站点短时客流预测是交通管理和人群调控的关键环节。为解决捕获客流动态空间相关性时存在的复杂度高及过拟合问题,提出一种基于Tucker张量分解的动态混合时空图卷积网络模型。该模型由多个时间注意力模块与混合图卷积模块交替堆叠构成,分别进行时间和空间特征的学习。其中混合图卷积模块融合预定义静态图卷积与动态图卷积,预定义图反映站点间的物理连通关系,动态图卷积采用基于Tucker分解生成的动态邻接矩阵,通过在不同层间共享邻接矩阵的方法,高效学习站间的动态空间关系,将计算复杂度从O(T×N^(2))降为O(N×d),同时有效解决过拟合问题。实验结果表明,研究设计的模型在北京、上海、杭州3个真实数据集上的预测精度优于现有方法;在客流变化趋势明显,特别是有潮汐现象的站点表现更好;动态混合时空图卷积网络模型中的动态邻接矩阵能够自适应捕捉动态空间相关性;动态图卷积与混合图卷积模块在模型性能提升中具有关键作用。 展开更多
关键词 城市轨道交通 短时客流预测 动态时空图卷积网络 Tucker分解 神经网络
在线阅读 下载PDF
面向时空图建模的图小波卷积神经网络模型 被引量:10
6
作者 姜山 丁治明 +2 位作者 朱美玲 严瑾 徐馨润 《软件学报》 EI CSCD 北大核心 2021年第3期726-741,共16页
时空图建模是分析图形结构系统中各要素空间关系与时间趋势的一个基础工作.传统的时空图建模方法主要基于图中节点与节点关系固定的显式结构进行空间关系挖掘,这严重限制了模型的灵活性.此外,未考虑节点间的时空依赖关系的传统建模方法... 时空图建模是分析图形结构系统中各要素空间关系与时间趋势的一个基础工作.传统的时空图建模方法主要基于图中节点与节点关系固定的显式结构进行空间关系挖掘,这严重限制了模型的灵活性.此外,未考虑节点间的时空依赖关系的传统建模方法不能捕获节点间的长时时空趋势.为了克服这些缺陷,研究并提出了一种新的用于时空图建模的图神经网络模型,即面向时空图建模的图小波卷积神经网络模型(graph wavelet convolutional neural network for spatiotemporal graph modeling,简称GWNN-STGM).在GWNN-STGM中设计了一个图小波卷积神经网络层,并在该网络层中设计并引入了自适应邻接矩阵进行节点嵌入学习,使得模型能够在不需要结构先验知识的情况下,从数据集中自动发现隐藏的结构信息.此外,GWNN-STGM还包含了一个堆叠的扩张因果卷积网络层,使模型的感受野能够随着卷积网络层数的增加呈指数增长,从而能够处理长时序列.GWNN-STGM成功将图小波卷积神经网络层和扩张因果卷积网络层两个模块进行有效集成.通过在公共交通网络数据集上实验发现,提出的GWNNSTGM的性能优于其他的基准模型,这表明设计的图小波卷积神经网络模型在从输入数据集中探索时空结构方面具有很大的潜力. 展开更多
关键词 图小波卷积 卷积神经网络 时空图建模 时空结构 神经网络
在线阅读 下载PDF
基于图小波卷积神经网络的时空图挖掘模型 被引量:1
7
作者 赵世豪 毛国君 +2 位作者 熊保平 黄山 林江宏 《计算机工程》 CAS CSCD 北大核心 2023年第7期85-93,共9页
针对传统时空图网络模型对时空序列数据空间结构刻画和时空特性挖掘不充分的问题,提出一种基于图小波神经网络的时空图挖掘模型(ST-GWNN)。基于图小波神经网络通过学习节点特征的局部化表达来捕捉时空序列数据中的空间拓扑结构,时间门... 针对传统时空图网络模型对时空序列数据空间结构刻画和时空特性挖掘不充分的问题,提出一种基于图小波神经网络的时空图挖掘模型(ST-GWNN)。基于图小波神经网络通过学习节点特征的局部化表达来捕捉时空序列数据中的空间拓扑结构,时间门控卷积层通过门控线性单元所堆叠的因果卷积来提取时间特征信息,并将多个时间步的空间图相融合来学习时间和空间2个维度关联特征的能力,以更好地捕获时空序列中复杂的时空相关性信息。在公共交通数据集PEMS-BAY上的实验结果表明,ST-GWNN模型能够获得较好的预测效果,当预测时长为15 min时,在MAE、RMSE、MAPE 3个评价指标上相较于基准模型取得最小值,且较基准模型最优值分别降低了2.31%、6.96%、5.84%;当预测时长为30 min和60 min时,较基准模型最优的MAPE、RMSE值分别降低了4.9%、3.51%和6.05%、6.68%,可适用于图网络属性的时空关系预测任务。 展开更多
关键词 时空图 神经网络 时空序列数据 图小波网络 因果卷积
在线阅读 下载PDF
基于时空图卷积神经网络的教师教学行为识别方法 被引量:2
8
作者 庞世燕 郝京京 +1 位作者 胡瀚淳 杨玉芹 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第5期715-723,共9页
教师课堂教学行为是课堂教学活动的重要组成部分,而进行教师的教学行为识别对评价课堂教学质量有着重要意义.该文提出了一种基于时空图卷积神经网络的教师教学行为识别方法,此方法首先以教师教学视频中的单帧影像为单元提取人体骨架点信... 教师课堂教学行为是课堂教学活动的重要组成部分,而进行教师的教学行为识别对评价课堂教学质量有着重要意义.该文提出了一种基于时空图卷积神经网络的教师教学行为识别方法,此方法首先以教师教学视频中的单帧影像为单元提取人体骨架点信息,然后以时空图卷积神经网络为框架聚合多帧影像信息,对教师教学行为类别进行识别.为了验证方法的有效性,文章构建了两组包含6大类教师日常教学行为的视频数据集,并进行了对比实验.实验结果表明,基于时空图卷积神经网络的教师教学行为识别方法可以有效排除教室场景内无关信息的干扰,充分利用多帧影像中骨架点间产生的时空信息,来准确识别教师典型教学行为,具有更高准确率和更强的鲁棒性.该文相关研究可以及时、有效地反应教师的教学状态,有助于教师及时优化教学行为,助力智慧教学. 展开更多
关键词 行为识别 教师教学行为 时空图卷积神经网络 骨架信息提取
在线阅读 下载PDF
时空图卷积网络的骨架识别硬件加速器设计
9
作者 谭会生 严舒琪 杨威 《电子测量技术》 北大核心 2024年第11期36-43,共8页
随着人工智能技术的不断发展,神经网络的数据规模逐渐扩大,神经网络的计算量也迅速攀升。为了减少时空图卷积神经网络的计算量,降低硬件实现的资源消耗,提升人体骨架识别时空图卷积神经网络(ST-GCN)实际应用系统的处理速度,利用现场可... 随着人工智能技术的不断发展,神经网络的数据规模逐渐扩大,神经网络的计算量也迅速攀升。为了减少时空图卷积神经网络的计算量,降低硬件实现的资源消耗,提升人体骨架识别时空图卷积神经网络(ST-GCN)实际应用系统的处理速度,利用现场可编程门阵列(FPGA),设计开发了一个基于时空图卷积神经网络的骨架识别硬件加速器。通过对原网络模型进行结构优化与数据量化,减少了FPGA实现约75%的计算量;利用邻接矩阵稀疏性的特点,提出了一种稀疏性矩阵乘加运算的优化方法,减少了约60%的乘法器资源消耗。经过对人体骨架识别实验验证,结果表明,在时钟频率100 MHz下,相较于CPU,FPGA加速ST-GCN单元,加速比达到30.53;FPGA加速人体骨架识别,加速比达到6.86。 展开更多
关键词 人体骨架识别 时空图卷积神经网络(st-gcn) 硬件加速器 现场可编程门阵列(FPGA) 稀疏矩阵乘加运算硬件优化
在线阅读 下载PDF
基于多尺度时空图卷积网络与Transformer融合的多节点短期电力负荷预测方法 被引量:13
10
作者 孟衡 张涛 +3 位作者 王金 张晋源 李达 时光蕤 《电网技术》 EI CSCD 北大核心 2024年第10期4297-4305,I0113-I0117,I0112,共15页
深度学习的发展为处理电力系统中海量的负荷数据提供了良好的基础。然而,现有的负荷预测方法大多采用历史负荷序列的时间相关性构建模型,没有同时考虑相邻节点之间存在的空间耦合特性和外部因素的影响。由于图卷积神经网络在挖掘电力系... 深度学习的发展为处理电力系统中海量的负荷数据提供了良好的基础。然而,现有的负荷预测方法大多采用历史负荷序列的时间相关性构建模型,没有同时考虑相邻节点之间存在的空间耦合特性和外部因素的影响。由于图卷积神经网络在挖掘电力系统拓扑结构中的空间特征上具有巨大潜力,因此,该文提出一种基于属性增强的多尺度时空图卷积神经网络与Transformer融合的电力系统多节点负荷预测方法。首先,将外部因素建模为动态属性和静态属性,设计属性增强单元对这些因素进行编码,并利用快速最大互信息系数量化各节点负荷的动态耦合信息。其次,采用多尺度时空图卷积网络挖掘节点间的短期时空特征,同时采用Transformer补充挖掘各节点负荷的长期时域特征。最后,使用门控融合层对两个模型进行融合。在纽约公开负荷数据集上的实验结果表明,所提方法能够充分挖掘多节点负荷数据中的时空耦合特性,具有更高的预测精度和稳定性。 展开更多
关键词 多节点负荷预测 多尺度时空图卷积神经网络 属性增强 TRANSFORMER
在线阅读 下载PDF
基于时空图卷积网络的电力系统暂态稳定评估 被引量:33
11
作者 庄颖睿 肖谭南 +2 位作者 程林 陈颖 关慧哲 《电力系统自动化》 EI CSCD 北大核心 2022年第11期11-18,共8页
快速准确的电力系统暂态稳定分析对电力系统安全稳定运行有着重要意义。现代电力系统设备元件日趋复杂多样导致系统非线性日益增强,作为电力系统暂态稳定分析传统方法的时域仿真法过于耗时。针对此问题,提出了一种基于时空图卷积网络模... 快速准确的电力系统暂态稳定分析对电力系统安全稳定运行有着重要意义。现代电力系统设备元件日趋复杂多样导致系统非线性日益增强,作为电力系统暂态稳定分析传统方法的时域仿真法过于耗时。针对此问题,提出了一种基于时空图卷积网络模型的暂态稳定分析方法,将短时仿真与神经网络预测相结合,减少暂态稳定分析所需时间,可用于多种仿真分析场景。该方法将暂态稳定分析建模为样本空间映射问题,利用数据驱动方法训练神经网络模型,建立从暂态过程电网空间结构与时序潮流数据到暂态稳定的映射。模型通过同时提取暂态过程故障前、故障中、故障后的电网空间结构特征和时序潮流特征来实现对系统暂态稳定的快速准确判断。与传统暂态稳定分析方法相比,所提出的方法仅需进行短时间仿真分析,提高了分析效率。与其他机器学习模型相比,时空图卷积网络模型同时挖掘电力系统暂态过程的空间特征和时间特征,引入了更多与稳定性相关的先验知识,具有更优的特征挖掘能力和分析性能。基于新英格兰39节点系统的测试结果验证了所提方法的可行性、有效性和优越性。 展开更多
关键词 电力系统 暂态稳定分析 特征分析 数据驱动 神经网络 时空图卷积网络
在线阅读 下载PDF
基于时空图卷积网络的多变量时间序列预测方法 被引量:4
12
作者 李怀翱 周晓锋 +2 位作者 房灵申 李帅 刘舒锐 《计算机应用研究》 CSCD 北大核心 2022年第12期3568-3573,共6页
为了扩大时空图卷积网络的预测范围,将它应用在关联关系未知场景下的多变量时间序列预测问题,提出一种附加图学习层的时空图卷积网络预测方法(GLB-STGCN)。图学习层借助余弦相似度从时间序列中学习图邻接矩阵,通过图卷积网络捕捉多变量... 为了扩大时空图卷积网络的预测范围,将它应用在关联关系未知场景下的多变量时间序列预测问题,提出一种附加图学习层的时空图卷积网络预测方法(GLB-STGCN)。图学习层借助余弦相似度从时间序列中学习图邻接矩阵,通过图卷积网络捕捉多变量之间的相互影响,最后通过多核时间卷积网络捕捉时间序列的周期性特征,实现对多变量的精准预测。为验证GLB-STGCN的有效性,使用天文、电力、交通和经济四个领域的公共数据集和一个工业场景生产数据集进行预测实验,结果表明GLB-STGCN优于对比方法,在天文数据集上的表现尤为出色,预测误差分别降低了6.02%、8.01%、6.72%和5.31%。实验结果证明GLB-STGCN适用范围更广,预测效果更好,尤其适合自然周期明显的时间序列预测问题。 展开更多
关键词 多变量时间序列预测 时空图卷积网络 神经网络 时间卷积网络
在线阅读 下载PDF
多尺度全局自适应注意力图神经网络 被引量:1
13
作者 苟茹茹 杨文柱 +1 位作者 罗梓菲 原云峰 《计算机科学与探索》 CSCD 北大核心 2023年第12期3039-3051,共13页
针对动态多尺度图神经网络的编解码网络中存在的身体部位内部关节点间关联度不高和感受野受限制导致运动预测误差偏高的问题,提出了一种用于人体运动预测的多尺度全局自适应注意力图神经网络,降低运动预测误差。提出了一种划分骨架关节... 针对动态多尺度图神经网络的编解码网络中存在的身体部位内部关节点间关联度不高和感受野受限制导致运动预测误差偏高的问题,提出了一种用于人体运动预测的多尺度全局自适应注意力图神经网络,降低运动预测误差。提出了一种划分骨架关节点的多距离分区策略,用于提高身体部位关节点信息在时间和空间上的关联程度;提出了全局自适应注意力时空卷积神经网络,以动态地加强网络对某一动作有贡献的时空关节点的关注度;将上述两处改进集成到图卷积神经网络门控循环单元中,以增强解码网络的状态传播性能,并降低预测误差。实验表明,与最新方法相比,该方法在Human 3.6M、CMU Mocap和3DPW数据集上的预测误差都有所下降。 展开更多
关键词 运动预测 多距离分区策略 全局自适应注意力 时空图卷积神经网络 门控循环单元
在线阅读 下载PDF
基于图卷积网络的儿童坐姿检测学习桌椅设计方法研究 被引量:6
14
作者 张飞宇 兰扬 +4 位作者 朱伟 宋玲 王张恒 李芳 孙德林 《家具与室内装饰》 北大核心 2024年第1期96-100,共5页
儿童长期处于伏案学习的状态,不良坐姿对儿童生长发育容易造成严重影响,对儿童坐姿的矫正已刻不容缓。通过对儿童在学习桌椅上的坐姿行为调研,基于OpenPose姿态估计算法进行坐姿检测分析,引入ST-GCN模型进行坐姿识别与评判,结果表明:使... 儿童长期处于伏案学习的状态,不良坐姿对儿童生长发育容易造成严重影响,对儿童坐姿的矫正已刻不容缓。通过对儿童在学习桌椅上的坐姿行为调研,基于OpenPose姿态估计算法进行坐姿检测分析,引入ST-GCN模型进行坐姿识别与评判,结果表明:使用ST-GCN模型能够快速准确识别儿童的八种坐姿,并根据识别结果对儿童进行有效的错误坐姿提示,其Macro-F1和Micro-F1评价指标分别提高了6.8%和7.4%。同时表明儿童坐姿矫正在自适应儿童学习桌椅上应用的可行性及有效性,可为智能儿童课桌椅的设计提供技术支撑。 展开更多
关键词 时空图卷积网络(st-gcn) 儿童坐姿识别 学习桌椅
在线阅读 下载PDF
应用STGCN时空建模的地震波阻抗反演方法
15
作者 王泽峰 赵海波 +3 位作者 杨懋新 王团 许辉群 毛伟建 《石油地球物理勘探》 北大核心 2025年第1期43-53,共11页
现今,深度学习地震波阻抗反演方法通常是通过低维度的时序建模,忽略了空间构造拓扑结构信息,导致反演精度较低。针对此问题,提出了一种基于STGCN(时空图卷积神经网络)时空建模的地震波阻抗反演方法。该方法考虑到地震数据的空间构造拓... 现今,深度学习地震波阻抗反演方法通常是通过低维度的时序建模,忽略了空间构造拓扑结构信息,导致反演精度较低。针对此问题,提出了一种基于STGCN(时空图卷积神经网络)时空建模的地震波阻抗反演方法。该方法考虑到地震数据的空间构造拓扑结构及互相关性,使用马氏距离对地震数据进行空间邻近度的加权处理建立邻接矩阵;进一步通过切比雪夫多项式扩大空间感受野的同时减少参数量,高效地提取地震数据的空间构造特征,同时利用门控循环单元捕获其时序相关性;最后构建时空图卷积单元实现基于STGCN的地震数据与波阻抗在时间和空间两个维度的映射。模型测试及实际资料反演结果表明,该方法在提高反演精度的同时对噪声具有一定的适应性,并可以很好的体现地层的横向变化。 展开更多
关键词 地震波阻抗反演 深度学习 时空建模 时空图卷积神经网络
在线阅读 下载PDF
用于人体动作识别的多尺度时空图卷积算法 被引量:11
16
作者 赵登阁 智敏 《计算机科学与探索》 CSCD 北大核心 2023年第3期719-732,共14页
基于骨骼数据的时空图卷积人体动作识别网络(ST-GCN)存在时间卷积层结构单一、固定的问题,难以全面提取每个动作类别所需的全部重要阶段特征。针对这一问题,提出了包含多个不同尺度卷积核和多种结构的时间图卷积层,构造了多尺度时空图... 基于骨骼数据的时空图卷积人体动作识别网络(ST-GCN)存在时间卷积层结构单一、固定的问题,难以全面提取每个动作类别所需的全部重要阶段特征。针对这一问题,提出了包含多个不同尺度卷积核和多种结构的时间图卷积层,构造了多尺度时空图卷积网络(SMT-GCN),利用不同的时间图卷积操作抽取并融合不同尺度的时间轨迹特征。同时,为了强化人体长距离关联信息和空间结构化特征,在SMT-GCN中融合了构造的变换残差模块(Tran-Res)和轻量级注意力模块(CBAM),构造了多尺度时空图注意卷积网络(SAMTGCN)。实验在NTU RGB+D数据集和HDM05数据集上进行,提出的SMT-GCN和SAMT-GCN均获得了识别精度的提升;另外,设计的多尺度时间图卷积模块可以融合于其他基线网络中并提高性能。为探究卷积核尺度及结构对算法的影响,设计了相应消融实验,实验结果表明卷积核大小为1、5、9的SAMT-GCN性能最优,并且具有稠密结构的网络识别精度要高于具有串行和并行结构的网络。 展开更多
关键词 人体动作识别 时空图卷积网络(st-gcn) 多尺度时间图卷积 变换残差模块(Tran-Res) 轻量级注意力
在线阅读 下载PDF
融合图结构学习的物联网僵尸网络多分类检测研究
17
作者 李沛衡 林宏刚 《小型微型计算机系统》 北大核心 2025年第2期456-464,共9页
针对目前物联网僵尸网络多分类检测方法存在表征能力弱、难以剔除特征冗余和噪声、识别准确率低等问题,本文提出一种融合图结构学习的多分类检测方法.该方法利用阻尼增量统计多个时间片网络流量的特征对网络流量样本进行重构,设计自适... 针对目前物联网僵尸网络多分类检测方法存在表征能力弱、难以剔除特征冗余和噪声、识别准确率低等问题,本文提出一种融合图结构学习的多分类检测方法.该方法利用阻尼增量统计多个时间片网络流量的特征对网络流量样本进行重构,设计自适应图结构学习方法获取网络流量特征的时空关系表示,结合图正则化剔除特征冗余和噪声;基于时空图卷积神经网络在时空两个层面提取特征,实现对物联网僵尸网络攻击的多分类检测.在多个数据集上的实验结果表明,本文提出的方法具有良好的表征能力,能有效剔除特征中的冗余及噪声,提升检测的准确率,在多分类效果上优于其他模型. 展开更多
关键词 物联网僵尸网络 神经网络 图结构学习 时空图卷积 多分类检测
在线阅读 下载PDF
一种改进STGCN的深地时空域地震子波提取方法 被引量:1
18
作者 戴永寿 孙家钊 +3 位作者 李泓浩 颜廷尚 孙伟峰 左琳 《石油物探》 CSCD 北大核心 2024年第6期1111-1125,1137,共16页
地震子波的准确提取可有效提高全波形反演和偏移成像等方法的准确性,对储层预测和油气分析具有重要意义。由于深层能量衰减和复杂地质构造,地震子波不仅具有时变特性,同时也具有不可忽略的空变特性。而传统时变子波提取方法仅通过单道... 地震子波的准确提取可有效提高全波形反演和偏移成像等方法的准确性,对储层预测和油气分析具有重要意义。由于深层能量衰减和复杂地质构造,地震子波不仅具有时变特性,同时也具有不可忽略的空变特性。而传统时变子波提取方法仅通过单道地震记录提取时变子波,忽略了多道地震记录之间子波的空间变化。同时,传统时空域子波提取方法,如经验模态分解(EMD)方法,对测井资料等先验信息依赖程度较高,实际应用范围受限。深度学习为时空域子波提取提供了新的思路,针对以上问题,提出了一种改进时空图卷积神经网络(STGCN)的时空域子波提取方法。首先,根据目标区地震数据分布特征与非平稳性质,建立以非平稳地震剖面为输入,时空域子波为标签的合成训练数据,再利用传统EMD时变子波提取方法逐道提取目标区子波,有针对性地构建以目标区地震剖面为输入,目标区时空域子波为标签的实际训练数据。最后,利用两种训练数据对改进后的STGCN进行训练,使其能够融合提取的子波时空特征,从而实现目标区时空域子波的有效提取。合成数据和实际地震数据的处理结果表明,该方法对于深地时空域子波的提取有效且准确,相较于传统方法更具优越性,具有较好的实际应用价值。 展开更多
关键词 深度学习 时空域子波提取 时空图卷积神经网络 时空特征
在线阅读 下载PDF
交互关系超图卷积模型的双人交互行为识别 被引量:4
19
作者 代金利 曹江涛 姬晓飞 《智能系统学报》 CSCD 北大核心 2024年第2期316-324,共9页
为提高学校、商场等公共场所的安全性,实现对监控视频中的偷窃、抢劫和打架斗殴等异常双人交互行为的自动识别,针对现有基于关节点数据的行为识别方法在图的创建中忽略了2个人之间的交互信息,且忽略了单人非自然连接关节点间的交互关系... 为提高学校、商场等公共场所的安全性,实现对监控视频中的偷窃、抢劫和打架斗殴等异常双人交互行为的自动识别,针对现有基于关节点数据的行为识别方法在图的创建中忽略了2个人之间的交互信息,且忽略了单人非自然连接关节点间的交互关系的问题,提出一种基于交互关系超图卷积模型用于双人交互行为的建模与识别。首先针对每一帧的关节点数据构建对应的单人超图以及双人交互关系图,其中超图同时使多个非自然连接节点信息互通,交互关系图强调节点间交互强度。将以上构建的图模型送入时空图卷积对空间和时间信息分别建模,最后通过SoftMax分类器得到识别结果。该算法框架的优势是在图的构建过程中加强考虑双人的交互关系、非自然连接点间结构关系以及四肢灵活的运动特征。在NTU数据集上的测试表明,该算法得到了97.36%的正确识别率,该网络模型提高了双人交互行为特征的表征能力,取得了比现有模型更好的识别效果。 展开更多
关键词 双人交互 行为识别 关节点数据 深度学习 时空图卷积网络 超图 图结构 神经网络
在线阅读 下载PDF
基于关联分区和ST-GCN的人体行为识别 被引量:10
20
作者 刘锁兰 顾嘉晖 +1 位作者 王洪元 张云鹏 《计算机工程与应用》 CSCD 北大核心 2021年第13期168-175,共8页
基于骨骼的动作识别因不受人体物理特征的影响,简单清晰地传达了人体行为识别的重要信息而受到广泛关注。传统的应用程序骨架建模通常依赖遍历规则的人为设置而导致表达能力有限和推广困难。因此,在近年来热门的时空图卷积网络(ST-GCN)... 基于骨骼的动作识别因不受人体物理特征的影响,简单清晰地传达了人体行为识别的重要信息而受到广泛关注。传统的应用程序骨架建模通常依赖遍历规则的人为设置而导致表达能力有限和推广困难。因此,在近年来热门的时空图卷积网络(ST-GCN)模型基础上提出了一种新的划分骨架关节点的分区策略。该策略相比于原始分区方法加强了身体相对位置之间的关系,从而有利于提高骨架关节点信息在时间和空间上的关联。与此同时,在训练过程中通过设置不同的迭代学习率以进一步提高识别精度。在两个不同性质的大规模数据集Kinetics和NTURGB+D上与现有方法进行识别效果的比较,实验结果表明了该方法的有效性。 展开更多
关键词 行为识别 关节点 时空图卷积网络(st-gcn) 分区策略 学习率
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部