期刊文献+
共找到107篇文章
< 1 2 6 >
每页显示 20 50 100
时空分数阶对流扩散方程的两种有限差分格式的比较(英文)
1
作者 周文格 阿布都热西提.阿布都外力 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期545-551,共7页
提出了求解有限区域上的一维时空分数阶变系数对流扩散方程的两种隐式有限差分格式,就格式的精度和收敛阶比较这两种差分格式的优劣.当使用Caputo分数阶导数对a阶时间导数项进行离散时,在两个不同的点上分别采用中心差分,而对β阶空间... 提出了求解有限区域上的一维时空分数阶变系数对流扩散方程的两种隐式有限差分格式,就格式的精度和收敛阶比较这两种差分格式的优劣.当使用Caputo分数阶导数对a阶时间导数项进行离散时,在两个不同的点上分别采用中心差分,而对β阶空间导数项均使用转化的Grünwald公式进行离散.对得到的两种格式进行稳定性和收敛性分析.用几个已知精确解的数值例子验证和比较这两种有限差分格式的精确性和有效性. 展开更多
关键词 时空分数阶对流扩散方程 有限差分 转化的Grünwald公式 稳定性 收敛性
在线阅读 下载PDF
基于再生核和有限差分法求解变系数时间分数阶对流扩散方程 被引量:1
2
作者 吕学琴 何松岩 王世宇 《数学物理学报(A辑)》 北大核心 2025年第1期153-164,共12页
针对变系数的时间分数阶对流-扩散方程,首先,使用有限差分法,得到了该方程的半离散格式.之后再利用再生核方法,得到了方程的精确解u(x,t_(n)),将精确解u(x,t_(n))取m项截断,可得到近似解u_(m)(x,t_(n)).通过证明,得到该方法是稳定的.最... 针对变系数的时间分数阶对流-扩散方程,首先,使用有限差分法,得到了该方程的半离散格式.之后再利用再生核方法,得到了方程的精确解u(x,t_(n)),将精确解u(x,t_(n))取m项截断,可得到近似解u_(m)(x,t_(n)).通过证明,得到该方法是稳定的.最后,通过三个数值例子,并与其他文献中的方法在同等条件下进行了比较,证明该算法有效. 展开更多
关键词 CAPUTO分数导数 再生核方法 变系数时间分数对流扩散方程 有限差分方法
在线阅读 下载PDF
时空分数阶Sasa-Satsuma方程的行波解和分岔分析
3
作者 徐健淞 孙峪怀 《广西师范大学学报(自然科学版)》 北大核心 2025年第4期120-128,共9页
本文研究时空分数阶Sasa-Satsuma方程行波解的分岔及其动力学行为。首先对时空分数阶Sasa-Satsuma方程进行分数阶复变换,将其转化为等价的常微分系统,推导出对应的平面动力系统;然后对平面动力系统参数不同取值进行讨论,获得对应相图;... 本文研究时空分数阶Sasa-Satsuma方程行波解的分岔及其动力学行为。首先对时空分数阶Sasa-Satsuma方程进行分数阶复变换,将其转化为等价的常微分系统,推导出对应的平面动力系统;然后对平面动力系统参数不同取值进行讨论,获得对应相图;再根据系统分岔情况,求解时空分数阶Sasa-Satsuma方程不同轨线各类行波解的精确表达式;最后给出部分解的三维图。 展开更多
关键词 时空分数Sasa-Satsuma方程 行波解 动力系统 分岔
在线阅读 下载PDF
非均匀网格上时间分数阶扩散-波动方程的BDF2型有限元方法
4
作者 祝鹏 陈艳萍 徐先宇 《数学物理学报(A辑)》 北大核心 2025年第4期1268-1290,共23页
众所周知,非均匀网格的研究可以有效地解决分数阶Caputo型导数的初值奇异现象.在非均匀网格的理论分析中,经常采用分数阶离散Grönwall不等式进行误差分析,缺乏对误差结构的具体研究.设计了一种非均匀网格上的误差卷积结构,用于分... 众所周知,非均匀网格的研究可以有效地解决分数阶Caputo型导数的初值奇异现象.在非均匀网格的理论分析中,经常采用分数阶离散Grönwall不等式进行误差分析,缺乏对误差结构的具体研究.设计了一种非均匀网格上的误差卷积结构,用于分析时间分数阶扩散-波动方程.将二次插值近似应用于Caputo型导数,通过使用降阶法和离散互补卷积核对Caputo型导数进行离散,得到了非均匀网格上的BDF2型有限元方法.离散互补卷积核在算法的收敛性分析中至关重要,因为它简化有限元理论分析的过程,并基于卷积核和插值估计的性质构建了全局一致性误差估计.详细估计了非均匀网格上BDF2有限元格式的L^(2)-范数误差和H^(1)-范数误差,并通过实验验证了所提出的有限元格式与理论收敛阶之间的一致性. 展开更多
关键词 时间分数扩散-波动方程 离散卷积核 BDF2 型有限元格式 误差卷积结构 非均匀网格
在线阅读 下载PDF
一类带有非线性记忆项的时间分数阶微分方程解的爆破
5
作者 李亚宁 王梦君 《应用数学》 北大核心 2025年第2期477-485,共9页
本文研究非齐次项对一类时间分数阶扩散方程解的爆破的影响.运用检验函数法,得到非齐次项和初值满足一定条件时,方程的解在有限时间内爆破.该结论与非齐次项为零时的结论完全不同.从而说明非齐次项对解的爆破有很大影响.
关键词 时间分数扩散方程 局部存在性 爆破
在线阅读 下载PDF
Riesz空间分数阶对流扩散方程的一种计算有效求解方法 被引量:2
6
作者 沈淑君 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期20-24,共5页
Riesz空间分数阶对流扩散方程是从混沌动力系统导出的.继续Ilic,Liu等的工作,我们提出在有界区域内求解Riesz空间分数阶对流-扩散方程的一种新的计算有效方法.即基于这两个Riesz空间分数阶导数的矩阵表示.这个方法的创新在于这个算子的... Riesz空间分数阶对流扩散方程是从混沌动力系统导出的.继续Ilic,Liu等的工作,我们提出在有界区域内求解Riesz空间分数阶对流-扩散方程的一种新的计算有效方法.即基于这两个Riesz空间分数阶导数的矩阵表示.这个方法的创新在于这个算子的标准离散得到包含具有相同分数次幂的矩阵的一个常微分方程组,并利用计算有效的分数阶行方法求解.同时借助于分数阶导数的谱表示和拉普拉斯变换,导出这个Riesz空间分数阶对流扩散方程的解析解.最后给出了数值例子来证实数值方法的有效性. 展开更多
关键词 Riesz空间分数导数 矩阵转换技巧 拉普拉斯变换 对流扩散方程 行方法
在线阅读 下载PDF
基于时间分数阶扩散方程的药物控释初始浓度优化 被引量:1
7
作者 张新明 黎潇 黄何 《工程数学学报》 CSCD 北大核心 2024年第5期867-881,共15页
药物控释系统是指通过调控内部某些设计参数,以达到特定药物释放目标的一种可控释体系。针对基于时间分数阶扩散方程的药物控释体系初始浓度优化问题,采用B样条小波方法求解正问题,采用结合了小生境策略和布谷鸟搜索算法的小生境布谷鸟... 药物控释系统是指通过调控内部某些设计参数,以达到特定药物释放目标的一种可控释体系。针对基于时间分数阶扩散方程的药物控释体系初始浓度优化问题,采用B样条小波方法求解正问题,采用结合了小生境策略和布谷鸟搜索算法的小生境布谷鸟算法优化不同分数阶下的药物初始浓度,从而近似达到三种预期药物释放目标。对于正问题求解,主要结合Caputo导数和三次B样条尺度函数,建立了一种B样条小波方法的迭代求解格式;对于初始浓度优化问题,引入了反问题研究思路,将药物控释体系的优化设计问题归结为基于分数阶扩散方程的参数辨识问题。为了实现参数反演控制,引入了小生境布谷鸟智能优化算法,反演计算控释体系中的初始浓度,有效地解决了布谷鸟算法易陷入局部极值的问题。针对恒速释放,线性降低释放和非线性释放三种释放目标,给出了最优控制参数设计,数值算例验证了所提方法的有效性。 展开更多
关键词 时间分数扩散方程 药物控释体系初始浓度优化 B样条小波方法 小生境布谷鸟算法
在线阅读 下载PDF
半线性分数阶扩散方程的时空有限元方法:间断Galerkin方法(英文) 被引量:2
8
作者 刘金存 李宏 《应用数学》 CSCD 北大核心 2013年第4期853-862,共10页
本文研究半线性分数阶扩散问题的Galerkin时空有限元方法,该方法在空间连续,而在时间上间断.将有限元与有限差分方法相结合,充分利用拉格朗日插值多项式在Radau点处的特性,给出弱解的存在唯一性证明,且不需对时空网格施加任何限制.通过... 本文研究半线性分数阶扩散问题的Galerkin时空有限元方法,该方法在空间连续,而在时间上间断.将有限元与有限差分方法相结合,充分利用拉格朗日插值多项式在Radau点处的特性,给出弱解的存在唯一性证明,且不需对时空网格施加任何限制.通过引入椭圆投影算子,详细导出了最优阶L∞(L2)模误差估计. 展开更多
关键词 分数扩散方程 间断GALERKIN方法 存在唯一性 误差估计
在线阅读 下载PDF
时空分数阶扩散波动方程的初值识别问题
9
作者 杨帆 曹英 李晓晓 《数学物理学报(A辑)》 CSCD 北大核心 2023年第2期377-398,共22页
研究具有时空分数阶导数的扩散波动方程的初值识别反问题.分析该反问题的不适定性,给出条件稳定性结果.利用Tikhonov正则化方法恢复解的稳定性,并分别给出在先验和后验正则化参数选取规则下,正则解和精确解之间的误差估计.通过数值算例... 研究具有时空分数阶导数的扩散波动方程的初值识别反问题.分析该反问题的不适定性,给出条件稳定性结果.利用Tikhonov正则化方法恢复解的稳定性,并分别给出在先验和后验正则化参数选取规则下,正则解和精确解之间的误差估计.通过数值算例说明Tikhonov正则化方法求解此类反问题非常有效. 展开更多
关键词 时空分数扩散波动方程 不适定问题 初值识别 TIKHONOV正则化方法 误差估计
在线阅读 下载PDF
时变系数分数阶扩散方程初边值问题解的存在性
10
作者 余子成 何家维 《广西大学学报(自然科学版)》 CAS 北大核心 2024年第5期1126-1137,共12页
为了研究系数依赖于时间变化参数的分数阶扩散方程的可解性,本文在分数阶扩散方程系数满足一致椭圆性条件与H lder正则性假设下,利用双线性形式技巧将该分数阶扩散方程抽象为非自治分数阶发展方程,基于分数阶积分理论、Mittag Leffler... 为了研究系数依赖于时间变化参数的分数阶扩散方程的可解性,本文在分数阶扩散方程系数满足一致椭圆性条件与H lder正则性假设下,利用双线性形式技巧将该分数阶扩散方程抽象为非自治分数阶发展方程,基于分数阶积分理论、Mittag Leffler函数、半群理论和不动点理论等抽象分析工具,证明了时变系数的分数阶扩散方程初边值问题解的存在性。 展开更多
关键词 分数扩散方程 非自治分数发展方程 存在性
在线阅读 下载PDF
基于L2-1_(σ)格式逼近时间分数阶扩散方程的差分方法及其收敛性分析
11
作者 姜楠楠 周晓军 《贵州师范大学学报(自然科学版)》 CAS 北大核心 2024年第2期100-105,111,共7页
针对时间分数阶扩散方程,在时间方向上结合L2-1_(σ)格式,空间上采用二阶中心差分方法进行离散,并对离散格式进行了收敛性和稳定性分析,离散格式和分析方法可以很容易推广到空间高维情形。最后,通过数值算例对L2-1_(σ)格式和L1格式进... 针对时间分数阶扩散方程,在时间方向上结合L2-1_(σ)格式,空间上采用二阶中心差分方法进行离散,并对离散格式进行了收敛性和稳定性分析,离散格式和分析方法可以很容易推广到空间高维情形。最后,通过数值算例对L2-1_(σ)格式和L1格式进行了误差和收敛阶的对比,显示出L2-1_(σ)格式在时间分数阶导数逼近上的优势。 展开更多
关键词 时间分数扩散方程 收敛 差分格式
在线阅读 下载PDF
变系数分数阶对流扩散方程的一种算子矩阵方法 被引量:2
12
作者 朱晓钢 聂玉峰 《应用数学和力学》 CSCD 北大核心 2018年第1期104-112,共9页
研究带Caputo分数阶导数的变系数对流扩散方程的数值解法.基于Chebyshev cardinal函数,推导Riemann-Liouville分数阶积分的一个有效算子矩阵,以之为基础,提出了变系数分数阶对流扩散方程的一种新的算子矩阵法.该方法将方程的求解转化成... 研究带Caputo分数阶导数的变系数对流扩散方程的数值解法.基于Chebyshev cardinal函数,推导Riemann-Liouville分数阶积分的一个有效算子矩阵,以之为基础,提出了变系数分数阶对流扩散方程的一种新的算子矩阵法.该方法将方程的求解转化成矩阵的代数运算,具有计算量小和易于编程等特点.给出数值算例并与一些现有的方法进行比较,结果表明该方法是收敛的且在计算精度上占有优势. 展开更多
关键词 分数微积分 CHEBYSHEV cardinal函数 分数对流扩散方程 算子矩阵方法
在线阅读 下载PDF
多项时间分数阶对流扩散方程的一类显-隐和隐-显差分格式 被引量:3
13
作者 秦潇 吕蓬 杨晓忠 《高校应用数学学报(A辑)》 北大核心 2022年第2期151-164,共14页
多项时间分数阶对流扩散方程在地下水运输,热传导,空气污染等领域有着广泛的应用,其数值方法的研究具有重要的科学意义和应用价值.针对多项时间分数阶对流扩散方程,基于经典的显式和隐式格式,文中构造一类显式-隐式(E-I)差分格式和隐式... 多项时间分数阶对流扩散方程在地下水运输,热传导,空气污染等领域有着广泛的应用,其数值方法的研究具有重要的科学意义和应用价值.针对多项时间分数阶对流扩散方程,基于经典的显式和隐式格式,文中构造一类显式-隐式(E-I)差分格式和隐式-显式(I-E)差分格式,利用傅里叶方法证明了这类格式的无条件稳定性和O(τ^(2-α)+h^(2))(α=max{α0,α1,…,αm})阶收敛性.数值试验表明,E-I和I-E差分格式具有省时性,计算效率高于经典的隐式格式.同样,E-I和I-E差分格式适用于求解具有初始奇性的多项时间分数阶对流扩散问题,格式的收敛阶为O(τ^(2-α)+h^(2)).证实E-I和I-E差分格式求解多项时间分数阶对流扩散方程是高效的. 展开更多
关键词 多项时间分数对流扩散方程 E-I格式和I-E格式 无条件稳定性 收敛性 数值试验
在线阅读 下载PDF
非局部扩散方程内部观测反演源项的唯一性及其数值模拟
14
作者 陈晨 李志远 《应用数学》 北大核心 2025年第3期636-650,共15页
本文主要研究带有多项时间分数阶导数的非局部扩散方程反源问题.首先,借助Laplace变换和分数阶Theta函数方法,证明该方程解具有唯一延拓性质.其次,依据Duhamel理论,推导出通过内部观测反演源项的唯一性结论.在数值方面,将反问题转化为... 本文主要研究带有多项时间分数阶导数的非局部扩散方程反源问题.首先,借助Laplace变换和分数阶Theta函数方法,证明该方程解具有唯一延拓性质.其次,依据Duhamel理论,推导出通过内部观测反演源项的唯一性结论.在数值方面,将反问题转化为优化问题,并采用正则化迭代阈值算法进行数值求解.最后,通过数值实验验证该算法的准确性和有效性. 展开更多
关键词 非局部扩散方程 反源问题 唯一延拓性 分数Theta函数
在线阅读 下载PDF
二维分数阶对流-弥散方程的数值解 被引量:9
15
作者 周璐莹 吴吉春 夏源 《高校地质学报》 CAS CSCD 北大核心 2009年第4期569-575,共7页
对二维时间分数阶对流-弥散方程和二维空间分数阶对流-弥散方程分别建立了差分格式,实现了对其的数值求解。针对理想算例进行计算求解,分析了时间和空间分数阶阶数取不同值时的扩散变化规律,验证了各自所描述的时间相关性与空间相关性... 对二维时间分数阶对流-弥散方程和二维空间分数阶对流-弥散方程分别建立了差分格式,实现了对其的数值求解。针对理想算例进行计算求解,分析了时间和空间分数阶阶数取不同值时的扩散变化规律,验证了各自所描述的时间相关性与空间相关性。同时与传统的二维整数阶对流-弥散方程的求解结果作了对比。当时间和空间分数阶阶数α与γ分别取整数时,二维时间分数阶对流-弥散方程和二维空间分数阶对流-弥散方程都与传统二维整数阶对流-弥散方程的计算结果相同,说明提出的对二维分数阶对流-弥散方程的数值求解方法是可行的。其结果对地下水溶质运移的进一步研究提供了有效的手段。 展开更多
关键词 二维分数对流-弥散方程 反常扩散 时空相关性 数值解 溶质运移
在线阅读 下载PDF
分数阶对流——弥散方程的数值求解 被引量:13
16
作者 夏源 吴吉春 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期441-446,共6页
对严格的时间分数阶对流——弥散方程和严格的空间分数阶对流——弥散方程分别建立了差分格式,并用所建立的两个差分格式对同一理想算例进行了求解.通过对分数阶导数取不同的参数值,得到一系列结果,分析了不同分数阶导数描述的反常扩散... 对严格的时间分数阶对流——弥散方程和严格的空间分数阶对流——弥散方程分别建立了差分格式,并用所建立的两个差分格式对同一理想算例进行了求解.通过对分数阶导数取不同的参数值,得到一系列结果,分析了不同分数阶导数描述的反常扩散现象及其变化规律,并和传统的整数阶对流——弥散方程的求解结果进行了对比.当时间分数阶对流——弥散方程和空间分数阶对流——弥散方程的分数阶导数的参数分别取整数值时,时间分数阶对流——弥散方程、空间分数阶对流——弥散方程和传统整数阶对流——弥散方程的计算结果相同,表明本文提出的对时间分数阶对流——弥散方程和空间对流——弥散方程数值求解方法是可行的,且整数阶对流——弥散方程是分数阶对流——弥散方程的特殊情况.和正常扩散相比,时间分数阶对流——弥散方程中分数阶导数的参数值越小,溶质扩散得越慢,表现为拖尾分布:空间分数阶对流——弥散方程中分数阶导数的参数值越小,溶质扩散得越快,表明空间的非局域性相关性越强. 展开更多
关键词 分数对流——弥散方程 反常扩散 时空相关性 数值求解
在线阅读 下载PDF
分数阶对流扩散方程的半加权有限差分格式(英文)
17
作者 朱琳 芮洪兴 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期18-29,35,共13页
对于空间分数阶对流扩散方程的初边值问题提出了一系列半加权差分格式.可以证明此格式当分数阶导数属于[((17)^(1/2)-1)/2,2]时无条件稳定,且二阶收敛.最后给出数值算例验证了理论证明.
关键词 半加权有限差分格式 分数对流扩散方程 无条件稳定
在线阅读 下载PDF
时间分数阶反应-扩散方程的隐式差分近似 被引量:20
18
作者 于强 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第3期315-319,共5页
考虑时间分数阶反应-扩散方程,它是从标准的反应-扩散方程中用分数阶导数α(0<α<1)代替一阶时间导数而得到.提出了一个计算有效的隐式差分近似.利用分数阶离散系数的特点,证明了这个隐式差分近似是无条件稳定的,并且也证明了它... 考虑时间分数阶反应-扩散方程,它是从标准的反应-扩散方程中用分数阶导数α(0<α<1)代替一阶时间导数而得到.提出了一个计算有效的隐式差分近似.利用分数阶离散系数的特点,证明了这个隐式差分近似是无条件稳定的,并且也证明了它的收敛性.最后给出数值例子. 展开更多
关键词 时间分数 反应-扩散方程 隐式差分近似 稳定性 收敛性
在线阅读 下载PDF
有限区间上的分数阶扩散-波方程定解问题与Laplace变换 被引量:9
19
作者 段俊生 徐明瑜 《高校应用数学学报(A辑)》 CSCD 北大核心 2004年第2期165-171,共7页
求解了如下的分数阶扩散-波方程定解问题0Dαtu=2ux2,0<x<1,t>0,0<α≤2,u(0,t;α)=0,u(1,t;α)=θ(t),u(x,0+;α)=0,当1<α≤2时,还有ut(x,0+;α)=0.其中θ(t)是Heaviside单位阶跃函数,0Dαt为关于时间t的α阶Caput... 求解了如下的分数阶扩散-波方程定解问题0Dαtu=2ux2,0<x<1,t>0,0<α≤2,u(0,t;α)=0,u(1,t;α)=θ(t),u(x,0+;α)=0,当1<α≤2时,还有ut(x,0+;α)=0.其中θ(t)是Heaviside单位阶跃函数,0Dαt为关于时间t的α阶Caputo分数阶导数算子,u=u(x,t;α)为时间t的因果函数(即t<0时恒为零的函数).利用Laplace变换的复围道积分反演和离散化反演及FoxH函数理论,给出在计算上对大的t和小的t分别适用的解的表达式. 展开更多
关键词 CAPUTO分数导数 LAPLACE变换 FOX H函数 分数扩散-波方程
在线阅读 下载PDF
多项时间分数阶扩散方程类Wilson非协调元的超收敛分析 被引量:4
20
作者 王芬玲 张景丽 +2 位作者 樊明智 赵艳敏 史艳华 《应用数学》 CSCD 北大核心 2018年第1期79-88,共10页
基于L1离散格式,针对具有Caputo导数的二维多项时间分数阶扩散方程给出了类Wilson非协调有限元方法.首先证明其逼近格式的无条件稳定性.其次利用该单元的特殊性质和分数阶导数巧妙的处理技巧导出了超逼近结果,进一步地,借助插值后处理... 基于L1离散格式,针对具有Caputo导数的二维多项时间分数阶扩散方程给出了类Wilson非协调有限元方法.首先证明其逼近格式的无条件稳定性.其次利用该单元的特殊性质和分数阶导数巧妙的处理技巧导出了超逼近结果,进一步地,借助插值后处理技术导出了超收敛估计. 展开更多
关键词 多项时间分数扩散方程 类WILSON元 全离散格式 超逼近和超收敛
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部