Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific ...Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction.展开更多
贝叶斯最大熵方法(bayesian maximum entropy,简称BME)是现代时空地统计学的重要组成部分。该方法采用统计学中的贝叶斯理论和信息论中熵的概念来认识和处理时空变量,可以将所研究时空要素的软数据和硬数据系统合理地综合到对该要素的...贝叶斯最大熵方法(bayesian maximum entropy,简称BME)是现代时空地统计学的重要组成部分。该方法采用统计学中的贝叶斯理论和信息论中熵的概念来认识和处理时空变量,可以将所研究时空要素的软数据和硬数据系统合理地综合到对该要素的空间估计和分析制图过程中。本文首先结构化梳理贝叶斯最大熵方法的原理,对理论较深奥、公式较复杂的贝叶斯最大熵方法及该方法的特点加以概括,同时归纳与总结贝叶斯最大熵方法在地球科学领域内多个方向的应用研究进展,最后对该方法及其应用作总结与展望。经国内外学者多年的研究和实践,贝叶斯最大熵方法已被证明在地球科学领域有着更广阔的应用前景。展开更多
A pre-selection space time model was proposed to estimate the traffic condition at poor-data-detector,especially non-detector locations.The space time model is better to integrate the spatial and temporal information ...A pre-selection space time model was proposed to estimate the traffic condition at poor-data-detector,especially non-detector locations.The space time model is better to integrate the spatial and temporal information comprehensibly.Firstly,the influencing factors of the "cause nodes" were studied,and then the pre-selection "cause nodes" procedure which utilizes the Pearson correlation coefficient to evaluate the relevancy of the traffic data was introduced.Finally,only the most relevant data were collected to compose the space time model.The experimental results with the actual data demonstrate that the model performs better than other three models.展开更多
This paper focuses on the distributed parameter modeling of the zinc electrowinning process(ZEWP)to reveal the spatiotemporal distribution of concentration of zinc ions(CZI)and sulfuric acid(CSA)in the electrolyte.Con...This paper focuses on the distributed parameter modeling of the zinc electrowinning process(ZEWP)to reveal the spatiotemporal distribution of concentration of zinc ions(CZI)and sulfuric acid(CSA)in the electrolyte.Considering the inverse diffusion of such ions in the electrolyte,the dynamic distribution of ions is described by the axial dispersion model.A parameter estimation strategy based on orthogonal approximation has been proposed to estimate the unknown parameters in the process model.Different industrial data sets are used to test the effectiveness of the spatiotemporal distribution model and the proposed parameter estimation approach.The results demonstrate that the analytical model can effectively capture the trends of the electrolysis reaction in time and thus has the potential to implement further optimization and control in the ZEWP.展开更多
基金Project(2020YFC2008605)supported by the National Key Research and Development Project of ChinaProject(52072412)supported by the National Natural Science Foundation of ChinaProject(2021JJ30359)supported by the Natural Science Foundation of Hunan Province,China。
文摘Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction.
文摘贝叶斯最大熵方法(bayesian maximum entropy,简称BME)是现代时空地统计学的重要组成部分。该方法采用统计学中的贝叶斯理论和信息论中熵的概念来认识和处理时空变量,可以将所研究时空要素的软数据和硬数据系统合理地综合到对该要素的空间估计和分析制图过程中。本文首先结构化梳理贝叶斯最大熵方法的原理,对理论较深奥、公式较复杂的贝叶斯最大熵方法及该方法的特点加以概括,同时归纳与总结贝叶斯最大熵方法在地球科学领域内多个方向的应用研究进展,最后对该方法及其应用作总结与展望。经国内外学者多年的研究和实践,贝叶斯最大熵方法已被证明在地球科学领域有着更广阔的应用前景。
基金Project(D101106049710005) supported by the Beijing Science Foundation Program,ChinaProject(61104164) supported by the National Natural Science Foundation,China
文摘A pre-selection space time model was proposed to estimate the traffic condition at poor-data-detector,especially non-detector locations.The space time model is better to integrate the spatial and temporal information comprehensibly.Firstly,the influencing factors of the "cause nodes" were studied,and then the pre-selection "cause nodes" procedure which utilizes the Pearson correlation coefficient to evaluate the relevancy of the traffic data was introduced.Finally,only the most relevant data were collected to compose the space time model.The experimental results with the actual data demonstrate that the model performs better than other three models.
基金Project(61673400)supported by the National Natural Science Foundation of ChinaProject(2015cx007)supported by the Innovation-driven Plan in Central South University,China+1 种基金Project(61321003)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of ChinaProjects(61590921,61590923)supported by the Major Program of the National Natural Science Foundation of China
文摘This paper focuses on the distributed parameter modeling of the zinc electrowinning process(ZEWP)to reveal the spatiotemporal distribution of concentration of zinc ions(CZI)and sulfuric acid(CSA)in the electrolyte.Considering the inverse diffusion of such ions in the electrolyte,the dynamic distribution of ions is described by the axial dispersion model.A parameter estimation strategy based on orthogonal approximation has been proposed to estimate the unknown parameters in the process model.Different industrial data sets are used to test the effectiveness of the spatiotemporal distribution model and the proposed parameter estimation approach.The results demonstrate that the analytical model can effectively capture the trends of the electrolysis reaction in time and thus has the potential to implement further optimization and control in the ZEWP.