期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
时移多尺度相位熵在螺栓联接结构松动检测中的应用
1
作者 李伟 周传彪 韩振华 《机电工程》 北大核心 2025年第9期1724-1733,共10页
风力发电机组的螺栓在其应用过程中易发生松动,会造成机组结构强度降低和振动加剧。针对螺栓松动检测策略普遍存在效率不佳、松动状态表征精度不高的问题,提出了一种结合时移多尺度相位熵(TSMPhE)和鲸鱼优化算法(WOA)优化混合核极限学习... 风力发电机组的螺栓在其应用过程中易发生松动,会造成机组结构强度降低和振动加剧。针对螺栓松动检测策略普遍存在效率不佳、松动状态表征精度不高的问题,提出了一种结合时移多尺度相位熵(TSMPhE)和鲸鱼优化算法(WOA)优化混合核极限学习机(HKELM)的风力发电机组螺栓松动检测策略。首先,对螺栓结构不同松紧程度的振动信号进行了TSMPhE分析,提取了信号中嵌入的反映螺栓松紧程度的特征信息,构造了特征样本;然后,利用WOA对HKELM的参数进行了优化,获得了核参数以及核函数权重最优的HKELM分类器模型;最后,将TSMPhE特征输入至WOA-HKELM中进行了松动检测,以判断螺栓组是否需要进行紧固;采用风力发电机组不同工况下的健康、轻度松动、重度松动和完全松动螺栓振动信号对该方法进行了实验分析,并将其与其他的检测策略进行了对比。研究结果表明:该策略能有效判断不同工况下螺栓的松紧程度,最低检测精度达到了94.38%以上,而平均检测精度也达到了96.56%以上;相较其他检测策略,TSMPhE有更高的检测准确率和更小的准确率波动,准确率至少提高了2.72%,准确率波动减小了0.44。该策略可为螺栓松动的精确和快速检测提供可行的思路。 展开更多
关键词 海上风力发电机组 螺栓联接 松动状态表征精度 时移多尺度相位熵 混合核极限学习机 鲸鱼优化算法
在线阅读 下载PDF
基于VMD、PTSMFE与GWO-SVM的直流充电桩电源模块故障诊断方法研究
2
作者 刘志峰 蒋浩 +1 位作者 刘贺 李新宇 《中国测试》 北大核心 2025年第8期87-97,共11页
为有效实施直流充电桩电源模块的回收再利用,必须克服故障诊断中串并联开关器件特征提取困难和故障定位不准确的难题。为此,提出变分模态分解(variational modal decomposition, VMD)、相位复合时移多尺度模糊熵(phase compound time-sh... 为有效实施直流充电桩电源模块的回收再利用,必须克服故障诊断中串并联开关器件特征提取困难和故障定位不准确的难题。为此,提出变分模态分解(variational modal decomposition, VMD)、相位复合时移多尺度模糊熵(phase compound time-shift multiscale fuzzy entropy, PTSMFE)和灰狼优化算法优化支持向量机分类器(gray wolf optimization algorithm-support vector machine classifier, GWO-SVM)的充电桩故障诊断方法。首先将采集的原始故障信号分解成多组本征模态函数(intrinsic mode function, IMF),再利用PTSMFE提取出故障信号的原始相位信息,并转化成相位系数后加入熵值中,得到各故障状态的特征向量。最后将特征向量输入GWO-SVM进行故障识别分类。实验结果表明:与常用的小波分析(wavelet analysis)特征提取和BP(back propagation)神经网络故障诊断方法进行对比,该文方法展现出准确性与高效性,分类识别准确率达到97.27%。 展开更多
关键词 直流充电桩电源模块 故障诊断 回收再利用 相位复合时移多尺度模糊
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部