期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于最优参数VMD和改进散布熵的轴承亚健康状态识别 被引量:2
1
作者 魏文军 甘洁 《铁道科学与工程学报》 北大核心 2025年第2期887-899,共13页
针对轴承的亚健康状态存在噪声干扰、模态混叠、状态特征提取困难的问题,提出一种最优参数变分模态分解(variational mode decomposition, VMD)和改进散布熵的轴承亚健康状态识别方法 。首先,设计改进的麻雀搜索算法(improved sparrow s... 针对轴承的亚健康状态存在噪声干扰、模态混叠、状态特征提取困难的问题,提出一种最优参数变分模态分解(variational mode decomposition, VMD)和改进散布熵的轴承亚健康状态识别方法 。首先,设计改进的麻雀搜索算法(improved sparrow search algorithm, ISSA)来自适应地搜索VMD最优分解参数,从而提高VMD分解效率和质量,然后根据所确定的最优参数对信号进行VMD分解,得到一系列本征模态函数(intrinsic mode function, IMF),接着计算每个IMF与原始信号之间的皮尔逊相关系数(pearson correlation coefficient, PCC),选择相关系数大于0.3的IMF分量来重构信号,以实现信号的降噪和状态特征增强。其次,为了更好地表征轴承信号的复杂度和不规则性,并有效区分轴承健康和亚健康状态,在散布熵中引入时移多尺度分析和分数阶微积分,以提取多个尺度上的轴承微细状态特征。最后,利用欧氏距离刻画轴承状态曲线,根据切比雪夫不等式设定亚健康阈值,当欧氏距离大于亚健康阈值时给出相应预警,完成轴承亚健康状态识别。在XJTU-SY和IMS轴承数据集上的试验结果表明:ISSA算法相比其他优化算法具有更高的收敛速度和精度,最优化参数VMD能有效消除模态混叠问题,改进散布熵能准确提取轴承全寿命状态微细特征。所提算法无须对模型进行训练便能准确识别轴承亚健康状态并给出预警,有利于维护人员更好地维护轴承运行状态。 展开更多
关键词 轴承 亚健康状态识别 最优参数VMD 改进麻雀搜索算法 时移多尺度分数阶散布熵
在线阅读 下载PDF
基于时移多尺度波动散布熵和改进核极限学习机的水电机组故障诊断 被引量:5
2
作者 徐哲熙 刘婷 +3 位作者 任晟民 陈建林 吴凤娇 王斌 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期41-51,共11页
水电在能源供给结构改革中承担重要角色,随着风、光、潮汐等新型能源的不断接入,水电机组的负荷运行范围不断加宽,导致水电机组发生事故的概率增加,因此,开展水电机组智能故障诊断研究具有十分重要的现实意义。本文针对水电机组振动信... 水电在能源供给结构改革中承担重要角色,随着风、光、潮汐等新型能源的不断接入,水电机组的负荷运行范围不断加宽,导致水电机组发生事故的概率增加,因此,开展水电机组智能故障诊断研究具有十分重要的现实意义。本文针对水电机组振动信号中蕴含大量噪声信号,干扰故障诊断的问题,提出一种时移多尺度波动散布熵和改进核极限学习机相结合的水电机组故障诊断方法。首先,结合信息熵理论与时移思想,在多尺度波动散布熵的基础上,采用时移理论替代多尺度波动散布熵(MFDE)中传统的粗粒化过程,提出时移多尺度波动散布熵(TSMFDE),通过仿真实验,证明所提方法具有良好的时序长度鲁棒性、抗噪性及特征提取能力,解决了传统多尺度熵粗粒化不足的问题。然后,利用具有可移植性强、寻优能力强和收敛速度快等特征的算术优化算法(AOA)对核极限学习机(KELM)的正则化参数和核函数参数进行寻优,建立AOA-KELM分类器,解决了KELM超参数难以调节的问题。最终,通过转子试验台模拟实验,将TSMFDE提取的特征输入分类器中,完成模式识别工作。仿真结果表明,所提模型取得最高的诊断精度,达到了100.0%,相对于其他流行模型,本文所提模型展现了明显的优势,验证了所提模型的良好诊断精度。 展开更多
关键词 时移多尺度波动散布 核极限学习机 算术优化算法 水电机组 故障诊断
在线阅读 下载PDF
非局部多尺度分数阶微分图像增强算法研究 被引量:9
3
作者 黄果 许黎 +1 位作者 陈庆利 蒲亦非 《电子与信息学报》 EI CSCD 北大核心 2019年第12期2972-2979,共8页
为了更好增强图像中的有用信息,改善图像视觉效果,该文提出了一种基于非局部多尺度分数阶微分图像增强算子(NMFD)。该算子首先将图像分成若干块子图像,计算每一块子图像的边缘强度系数、熵值和粗糙度等细节特征,将得到的特征数据在全局... 为了更好增强图像中的有用信息,改善图像视觉效果,该文提出了一种基于非局部多尺度分数阶微分图像增强算子(NMFD)。该算子首先将图像分成若干块子图像,计算每一块子图像的边缘强度系数、熵值和粗糙度等细节特征,将得到的特征数据在全局图像范围进行统一尺度的归一化,然后对这些归一化的数据进行加权求和作为图像的非局部特征值,最后利用指数函数建立图像细节特征和分数阶微分算子阶次之间的非线性量化关系,在不同的图像子块区域,确定不同尺度的分数阶微分阶次,实现图像的非局部多尺度增强。 展开更多
关键词 图像增强 非局部多尺度分数微分算子 图像 图像对比度
在线阅读 下载PDF
基于RCMFFDE和SSA-RVM的旋转机械损伤检测模型 被引量:1
4
作者 王显彬 孙阳 《机电工程》 北大核心 2025年第3期510-519,共10页
针对旋转机械系统的振动信号具有明显的非线性,严重影响故障特征提取从而导致其识别精度不佳的问题,建立了一种基于精细复合多尺度分数波动散布熵(RCMFFDE)、t-分布随机邻域嵌入(t-SNE)和麻雀搜索算法优化相关向量机(SSA-RVM)的旋转机... 针对旋转机械系统的振动信号具有明显的非线性,严重影响故障特征提取从而导致其识别精度不佳的问题,建立了一种基于精细复合多尺度分数波动散布熵(RCMFFDE)、t-分布随机邻域嵌入(t-SNE)和麻雀搜索算法优化相关向量机(SSA-RVM)的旋转机械损伤检测模型。首先,进行了基于RCMFFDE方法的特征提取,生成了特征样本,以定量反映旋转机械的不同损伤情况;然后,采用t-SNE方法,将原始高维故障特征映射至低维空间,获得了对故障更敏感的低维特征;最后,将敏感的低维故障特征向量输入至SSA-RVM多分类器中,进行了训练和测试,实现了旋转机械样本的故障识别目的;采用两种旋转机械数据集进行了实验,并从准确率、效率和抗噪性方面,将RCMFFDE-SSA-SVM方法与多种特征提取方法进行了对比。研究结果表明:RCMFFDE能用于有效提取旋转机械的故障特征,分别取得99.2%和100%的识别精度;而对敏感特征进行分类所获得的精度优于对原始特征进行分类的情形,前者比后者提高了4%;在模式识别中,SSA-RVM优于其他分类器;自制数据集的诊断精度达到了97%,特征提取的时间为16.05 s。 展开更多
关键词 非线性振动信号 特征提取时间 故障识别精度(诊断精度) 精细复合多尺度分数波动散布 t-分布随机邻域嵌入 麻雀搜索算法优化相关向量机
在线阅读 下载PDF
基于FRCMDE与IBOA-LSSVM的变压器故障声纹诊断方法
5
作者 高家通 康兵 +3 位作者 许志浩 王宗耀 丁贵立 袁小翠 《噪声与振动控制》 北大核心 2025年第5期123-130,共8页
为提高多尺度散布熵对信号演化敏感度,提升变压器故障声纹诊断准确率,将分数阶精细复合多尺度散布熵(Fractional Refined Composite Multiscale Dispersion Entropy,FRCMDE)运用于变压器声纹特征提取。首先,确定FRCMDE参数,提取不同状... 为提高多尺度散布熵对信号演化敏感度,提升变压器故障声纹诊断准确率,将分数阶精细复合多尺度散布熵(Fractional Refined Composite Multiscale Dispersion Entropy,FRCMDE)运用于变压器声纹特征提取。首先,确定FRCMDE参数,提取不同状态下变压器声音信号的FRCMDE熵特征;其次,采用改进蝴蝶算法(Improved Butterfly Optimization Algorithm,IBOA)对最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)进行参数优化并构建IBOA-LSSVM模型,利用IBOA-LSSVM模型对特征数据进行分类,实现变压器故障声纹诊断;最后,为验证该方法的有效性,将其与其他经典方法比较,研究结果表明:所建FRCMDE-IBOA-LSSVM模型可有效区分8种状态下的变压器声音信号,诊断准确率达到99.69%,均高于其他方法。该方法可为变压器不停电监测与故障声纹诊断提供参考。 展开更多
关键词 故障诊断 变压器 声纹诊断 分数精细复合多尺度散布 改进蝴蝶优化算法
在线阅读 下载PDF
低速重载滚动轴承状态PSO-SVM识别方法研究
6
作者 张永鑫 宋晓庆 王志阳 《机械设计与制造》 北大核心 2025年第10期273-278,共6页
滚动轴承在不同状态下的标签化样本中通常包含多种故障模式和噪声,他们之间的关系往往是非线性的。传统方法往往难以处理这种复杂的非线性关系,且需要手动选择特征,易导致信息丢失或引入噪声,影响识别效果,为此提出一种低速重载滚动轴... 滚动轴承在不同状态下的标签化样本中通常包含多种故障模式和噪声,他们之间的关系往往是非线性的。传统方法往往难以处理这种复杂的非线性关系,且需要手动选择特征,易导致信息丢失或引入噪声,影响识别效果,为此提出一种低速重载滚动轴承状态粒子群优化算法-支持向量机(Particle Swarm Optimization-Support Vector Machine,PSO-SVM)识别方法。提取低速重载滚动轴承振动信号的层次时移多尺度波动散布熵作为轴承状态特征,并量化不同状态样本特征之间的差异。引入支持向量机构建低速重载滚动轴承状态识别模型,SVM将输入的非线性可分样本向量映射至高维空间,在空间中搜索最优线性平面,避免非线性带来的负面影响。并利用粒子群优化算法寻优支持向量机参数,获取最优参数组合,通过标签化样本集训练SVM作为状态识别模型,将训练完成SVM用于低速重载滚动轴承状态识别。实验结果表明,所提方法状态识别准确性较高,说明其能够更准确地识别出轴承的不同状态。 展开更多
关键词 低速重载滚动轴承 层次时移多尺度波动散布 粒子群优化算法 支持向量机 状态识别
在线阅读 下载PDF
基于HRCMFDE、LS、BA-SVM的行星齿轮箱故障诊断 被引量:4
7
作者 庄敏 李革 +1 位作者 范智军 孔德成 《机电工程》 CAS 北大核心 2022年第11期1535-1543,共9页
针对行星齿轮箱的特征提取以及故障识别问题,提出了一种基于混合精细复合多尺度波动散布熵(HRCMFDE)特征提取、拉普拉斯分数(LS)特征降维优化和蝙蝠算法优化支持向量机(BA-SVM)故障识别的行星齿轮箱故障诊断方法。首先,提出了一种新的... 针对行星齿轮箱的特征提取以及故障识别问题,提出了一种基于混合精细复合多尺度波动散布熵(HRCMFDE)特征提取、拉普拉斯分数(LS)特征降维优化和蝙蝠算法优化支持向量机(BA-SVM)故障识别的行星齿轮箱故障诊断方法。首先,提出了一种新的时间序列复杂度测量方法—HRCMFDE(其由5种不同粗粒化方式的RCMFDE组成,具备更全面和可靠的特征提取性能),用于从振动信号中挖掘出反映行星齿轮箱状态的故障信息,构成初始的混合故障特征;然后,考虑到由HRCMFDE组成的故障特征具有较高的维数和冗余,利用LS对初始特征进行了优化,生成了低维的敏感特征;最后,利用基于蝙蝠算法优化的支持向量机,对行星齿轮系不同故障特征向量进行了训练和分类,利用真实故障数据集对基于HRCMFDE、LS、BA-SVM的方法进行了验证。研究结果表明:利用行星齿轮箱数据集对该方案进行的有效性实验,能够准确地识别出齿轮箱的不同故障,其单次分类的准确率达到了98.13%,多次分类的平均准确率也优于对比方法;该结果验证了基于混合精细复合多尺度波动散布熵特征提取的有效性,采用该方法能够对行星齿轮箱的故障进行诊断。 展开更多
关键词 特征提取 特征降维优化 故障分类识别 混合精细复合多尺度波动散布 拉普拉斯分数 蝙蝠算法优化支持向量机
在线阅读 下载PDF
基于HTMFDE以及ICNN的滚动轴承寿命状态识别方法 被引量:1
8
作者 董绍江 刘文龙 +2 位作者 方能炜 胡小林 余腾伟 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第2期723-734,共12页
针对滚动轴承退化性能难以评估、寿命状态难以识别的难题,提出一种结合层次时移多尺度波动散布熵(Hierarchical Time-shifted Multiscale Fluctuation Dispersion Entropy,HTMFDE)、JRD距离(Jensen-Renyi divergence,JRD)以及改进卷积... 针对滚动轴承退化性能难以评估、寿命状态难以识别的难题,提出一种结合层次时移多尺度波动散布熵(Hierarchical Time-shifted Multiscale Fluctuation Dispersion Entropy,HTMFDE)、JRD距离(Jensen-Renyi divergence,JRD)以及改进卷积神经网络(Improved convolution neural network,ICNN)的轴承寿命状态识别新方法。首先,在传统多尺度波动散布熵的基础上,将传统均值粗粒化过程替换为改进的时移粗粒化过程,以解决传统均值粗粒化导致信号幅值特征丢失的问题。同时引入层次分解理论,克服多尺度分析方法不能全面提取不同频段故障特征的不足,得到最终的HTMFDE。之后利用HTMFDE方法提取滚动轴承信号的多维状态特征量,并进行归一化形成一组概率分布,计算轴承正常信号与故障信号之间的JRD距离作为性能退化指标。其次,根据构建的JRD性能退化曲线,划分轴承寿命状态并制作数据集,通过标签化的样本训练具有双层多尺度特征提取层的卷积神经网络,建立滚动轴承寿命状态识别模型。为了加快模型的收敛速度,对每层卷积进行批量归一化操作,同时采用全局池化代替全连接层以提升模型的训练效率。最后,在2组不同的轴承数据集上进行实验。实验结果表明,根据HTMFDE构建的JRD性能退化曲线能够精准地识别轴承性能退化起始点以及刻画轴承的退化趋势,所提出的ICNN模型在SNR=0~10 dB环境中平均识别正确率为98.5%,能够准确地识别轴承寿命状态,验证了所提方法的实用性以及有效性。 展开更多
关键词 寿命状态识别 滚动轴承 层次时移多尺度波动散布 JRD距离 改进卷积神经网络
在线阅读 下载PDF
改进蝙蝠算法优化支持向量机的故障诊断方法 被引量:7
9
作者 张凡 孙文磊 +1 位作者 王宏伟 徐甜甜 《机械科学与技术》 CSCD 北大核心 2023年第3期446-452,共7页
提出了一种基于变分模态分解(VMD)和时移多尺度散布熵(TSMDE)的故障特征提取结合改进的蝙蝠算法(IBA)来优化支持向量机(SVM)的滚动轴承故障诊断方法。通过变分模态分解,避免了模式混叠问题,提取各模态分量的散布熵构造故障特征向量,作... 提出了一种基于变分模态分解(VMD)和时移多尺度散布熵(TSMDE)的故障特征提取结合改进的蝙蝠算法(IBA)来优化支持向量机(SVM)的滚动轴承故障诊断方法。通过变分模态分解,避免了模式混叠问题,提取各模态分量的散布熵构造故障特征向量,作为故障诊断模型的输入;提出了一种新的自适应速度权重因子用于构建改进的蝙蝠算法以优化支持向量机(IBA-SVM),实现了对不同故障类型的轴承进行分类;利用实验数据对提出的诊断方法进行验证,并与用粒子群算法(PSO)优化支持向量机(PSO-SVM)的诊断方法进行对比。结果表明所提出的方法分类准确率更高,用时更少。 展开更多
关键词 变分模态分解 时移多尺度散布 蝙蝠算法 支持向量机 故障诊断
在线阅读 下载PDF
基于ALIF和TMFDE的滚动轴承故障诊断研究 被引量:1
10
作者 赵家浩 罗娜 梁永文 《制造技术与机床》 北大核心 2023年第7期9-15,共7页
为了提高滚动轴承的故障识别精度,提出了一种基于自适应局部迭代滤波(ALIF)和时移多尺度波动散布熵(TMFDE)的故障诊断方法。首先,利用ALIF对滚动轴承振动信号进行分解,获得一组IMF分量。其次,为了获得更集成的IMF分量,基于能量法评估各... 为了提高滚动轴承的故障识别精度,提出了一种基于自适应局部迭代滤波(ALIF)和时移多尺度波动散布熵(TMFDE)的故障诊断方法。首先,利用ALIF对滚动轴承振动信号进行分解,获得一组IMF分量。其次,为了获得更集成的IMF分量,基于能量法评估各IMF分量的重要性,将前3阶分量视为有效分量。接着,利用TMFDE量化有效分量中的特征信息,构建故障特征向量。最后,将故障特征输入至粒子群优化的极限学习机中进行故障识别。利用东南大学的滚动轴承数据对该方法进行了评估,结果表明该方法能够准确地识别故障的类型,与其他方法相比,该方法在数据量较少时仍然具有优异的稳定性。 展开更多
关键词 自适应局部迭代滤波 时移多尺度波动散布 能量法 滚动轴承 故障检测
在线阅读 下载PDF
基于TSMRFDE和随机森林的旋转机械故障诊断 被引量:4
11
作者 宋来建 王晓甜 吴彬彬 《组合机床与自动化加工技术》 北大核心 2022年第8期125-129,共5页
为高效检测旋转机械的故障类型和严重程度,提出了一种具有优异泛化性的旋转机械故障诊断方法。首先,基于反向波动散布熵和时移粗粒化处理,开发了一种新的测量时间序列复杂度的方法,称为时移多尺度反向波动散布熵(TSMRFDE);其次,采用t-... 为高效检测旋转机械的故障类型和严重程度,提出了一种具有优异泛化性的旋转机械故障诊断方法。首先,基于反向波动散布熵和时移粗粒化处理,开发了一种新的测量时间序列复杂度的方法,称为时移多尺度反向波动散布熵(TSMRFDE);其次,采用t-随机领域嵌入(t-SNE)对TSMRFDE进行流形降维,减小特征的冗余;最后,将低维故障特征输入至随机森林(RF)分类器进行故障识别。实验结果表明,TSMRFDE-t-SNE-RF在不同平台的实验中都取得了优异的故障识别结果,平均识别准确率分别达到了100%和97.9%,验证了该方法的泛化性和稳定性。 展开更多
关键词 时移多尺度反向波动散布 t-SNE 随机森林 旋转机械 故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部