In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 ...In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 aluminum alloy are studied.The result show that ECAP induces numerous substructures and dislocations,effectively promoting the precipitation of theηʹphase exhibiting a bimodal structure during inter-pass aging.Following inter-pass aging and subsequent ECAP,the decrease in grain size(4.8μm)is together with the increase in dislocation density(1.24×10^(15) m^(−2))due to the pinning effect of the precipitated phase.Simultaneously,the dislocation motion causes the second phase particles to become even finer and more diffuse.The synergistic effects of precipitation strengthening,fine grain strengthening,and dislocation strengthening collectively enhance the high strength of aluminum alloys,with ultimate tensile strength and yield strength reaching approximately 610 and 565 MPa,respectively.Meanwhile,ductility remains largely unchanged,primarily due to coordinated grain boundary sliding and the uniform and fine dispersion of second phase particles.展开更多
The asymmetric creep aging behaviors of a pre-treated Al-Zn-Mg-Cu alloy under high and low stresses have been investigated for high precision creep age forming application of aluminum integral panels.With the increase...The asymmetric creep aging behaviors of a pre-treated Al-Zn-Mg-Cu alloy under high and low stresses have been investigated for high precision creep age forming application of aluminum integral panels.With the increase of applied stress,the creep strains under the tensile stresses are higher than those of compressive stresses and the asymmetry of creep strain is more obvious.However,the mechanical properties of tensile stress creep aged samples are lower than those of compressive stress creep aged samples.Dislocation density,dislocation moving velocity and the proportion of precipitates directly lead to the asymmetry of creep strain and mechanical properties after tensile-compressive creep aging process.In addition,the tensile and compressive stresses have little effect on the width of the precipitate-free zone(PFZ).It indicates that in the high stress creep age forming process of the pretreated Al-Zn-Mg-Cu alloy,the tensile stress promotes the dislocation motion to obtain a better creep strain but weakens its mechanical properties compared with the compressive stress.In the field of civil aviation aircraft component manufacturing,the introduction of tension and compression stress asymmetry into the creep constitutive model may improve the accuracy of creep age forming components.展开更多
The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formabilit...The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion.展开更多
Hot tensile tests were performed on Hastelloy C-276 alloy in the temperature range of 850−1150℃ and strain rate range of 0.01−10 s^(−1) to reveal its fracture characteristics and critical fracture failure conditions ...Hot tensile tests were performed on Hastelloy C-276 alloy in the temperature range of 850−1150℃ and strain rate range of 0.01−10 s^(−1) to reveal its fracture characteristics and critical fracture failure conditions during high temperature deformation process.Short-term aging treatments were also conducted to analyze the effects of precipitation on the fracture behaviors in conjunction with the experimental results obtained from the hot tensile tests.It was observed that the main precipitates in Hastelloy C-276 alloy under hot tensile deformation and short-term aging treatment were identified as M_(6)C carbides,around which the microscopic voids nucleate when the external forces were applied.Considering the effects of deformation temperature and strain rate,two failure criteria based on Zener-Hollomon parameter were developed to describe the fracture behaviors of Hastelloy C-276 alloy deforming at elevated temperatures.Finite element method(FEM)coupling with the proposed failure criteria was used to examine the validity by comparing the predicted values with the experimental data,and the comparison results indicate that the established failure criteria were capable of predicting the fracture behaviors of Hastelloy C-276 alloy in hot deformation process.展开更多
It is well known that the morphologies of the α’ martensite formed from the γ phase in ferrous alloys are classified into five types of lath, butterfly, (225)A type plate,lenticular and thin-plate. Among those α...It is well known that the morphologies of the α’ martensite formed from the γ phase in ferrous alloys are classified into five types of lath, butterfly, (225)A type plate,lenticular and thin-plate. Among those α’ martensites, only the thin-plate martensite,which is characterized by containing a high density of transformation twins, has a potential of exhibiting a perfect shape memory (SM) effect.Recently the present authors found in Fe-Ni-Si alloys that the thin-plate martensite is formed by the introduction of fine and coherent γ’-(Ni,Fe)3Si particles with a L12 ordered structure in the austenite matrix due to ausaging. In the present study, the SM properties of the ausaged Fe-Ni-Si alloys with the thin-plate martensite are investigated by a conventional bending-test. The effects of the addition of Co to the Fe-Ni-Si alloys on the martensitic transformation and the SM properties are also investigated. It is shown that while the ausaged Fe-Ni-Si ternary alloys exhibit an imperfect SM effect due to reverse transformation from stress-induced thin-plate martensite to austenite, the SM properties are improved by the addition of Co. An almost perfect SM effect is confirmed in the Fe-Ni-Si-Co alloys by heating to 1 100 ℃ after deformation at -196 ℃.展开更多
In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick pl...In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick plate was investigated by hardness tests, electrical conductivity tests and transmission electron microscopy(TEM) observation.Results revealed that, during retrogression heating, the fine pre-precipitates in surface layer dissolve more and the undissolved η′ or η phases are more coarsened than that of center layer. During slow cooling after retrogression,precipitates continue coarsening but with a lower rate and the secondary precipitation occurs in both layers. Finer precipitates resulting from the secondary precipitation are more in surface. However, the coarsening and secondary precipitation behaviors are restrained in both layers under quick cooling condition. The electrical conductivity and through-thickness homogeneity of precipitates increases while the hardness decreases with cooling rate decreasing. After the optimized non-isothermal retrogression and re-ageing(NRRA) including air-cooling retrogression, the throughthickness homogeneity which is evaluated by integrated retrogression effects has been improved to 94%. The tensile strength, fracture toughness and exfoliation corrosion grade of Al-8Zn-2Mg-2Cu alloy plate is 619 MPa, 24.7 MPa·m^(1/2)and EB, respectively, which indicates that the non-isothermal retrogression and re-aging(NRRA) could improve the mechanical properties and corrosion resistance with higher through-thickness homogeneity.展开更多
This paper studied the influence of aging treatment on the corrosion behavior and mechanism of Mg-Y alloys with different Y content through corrosion mass loss test, electrochemical test and corrosion morphologies obs...This paper studied the influence of aging treatment on the corrosion behavior and mechanism of Mg-Y alloys with different Y content through corrosion mass loss test, electrochemical test and corrosion morphologies observation. Results show that the peak-aging times of Mg-(0.25, 2.5, 5, 8 and 15) Y alloys at 250 ℃ were 4, 6, 10, 12 and 16 h. The aging treatment reduced the corrosion resistance of Mg-Y alloys, and the corrosion resistance of Mg-Y alloys became worse with increasing of the aging time. The change magnitude of the open circuit potentials for Mg-(0.25, 2.5)Y alloys was greater than that of Mg-(5, 8 and 15)-Y alloys. The polarization curves of Mg (0.25, 2.5, 5, 8 and 15) Y alloys had the similar shape after aging treatment, and the slopes of the anodic branch were greater than those of the cathodic branches. After aging treatment, the corrosion modes of Mg-0.25Y and Mg-(2.5, 5, 8 and 15) Y alloys were uniform corrosion and pitting corrosion with small local deep corrosion.展开更多
In this paper,the effect of cathodic polarization on corrosion behavior of AA7003 under three kinds of aging treatments(including peak aging(PA),double peak aging(DPA)and regression re-aging(RRA))was studied in 3.5 wt...In this paper,the effect of cathodic polarization on corrosion behavior of AA7003 under three kinds of aging treatments(including peak aging(PA),double peak aging(DPA)and regression re-aging(RRA))was studied in 3.5 wt%sodium chloride solution through slow strain rate testing(SSRT)and electrochemical testing.X-ray diffraction(XRD)and scanning electron microscopy(SEM)methods were also applied to investigating corrosion behavior and fracture morphology.The results showed that under open circuit,stress corrosion cracking(SCC)of AA7003 might by classified as anodic dissolution.In this case,the extent of SCC susceptibility(ISCC)of AA7003 alloy with different aging treatments was as follows:ISCC(PA)>ISCC(DPA)>ISCC(RRA).On the other hand,stress corrosion cracking(SCC)of AA7003 under cathodic polarization might be classified as hydrogen embrittlement(HE)which had been proved in this paper by presence of AlH3 diffraction peak in XRD patterns.In this case,for AA7003 with any of the three aging treatments,hydrogen embrittlement susceptibility(IHE)increases with negatively shifting of cathodic polarization.展开更多
The effects of aging treatments on the tensile properties and compressive behavior of a thin-walled 6005 aluminum alloy tube were studied.Samples after three natural aging(NA)conditions were subsequently aged at 180℃...The effects of aging treatments on the tensile properties and compressive behavior of a thin-walled 6005 aluminum alloy tube were studied.Samples after three natural aging(NA)conditions were subsequently aged at 180℃ for 0.5−12.0 h artificial aging(AA).Tensile and compressive tests were performed after AA.The results show that for samples with the same NA,the longer the AA time is,the higher the strengths alloy owns,and at the same time the material shows a much lower elongation and faster process from plastic deformation to fracture.However,with NA prolonging,the alloy exhibits much better plastic deformation ability after AA,though its strength is decreased.The major cause of strength and plasticity variation induced by changing NA time is that the size of the main strengtheningβ''precipitates is larger and the density is lower.This character is evaluated by the strain hardening exponent n.Compressive results show that the optimum energy absorption characteristics can be acquired at a moderate n(14<n<17).Large n(n≥18)results in the fracture of tube during axial compression while low n(n≤13)causes lower energy absorption.展开更多
The effects of Ag on the microstructure and mechanical properties of 2519 aluminum alloy were investigated by means of tensile test, micro-hardness test, transmission electron microscope and scanning electron microsco...The effects of Ag on the microstructure and mechanical properties of 2519 aluminum alloy were investigated by means of tensile test, micro-hardness test, transmission electron microscope and scanning electron microscope. The results show that the addition of 0.3% (mass fraction) Ag accelerates 2519 aluminum alloy’s age-hardening, increases its peak hardness and reduces 4h of peak aged time at 180℃. The addition of 0.3%(mass fraction) Ag increses the tensile strength at room temperature and elevated temperature. This increment at room temperature and 200℃ is 24MPa and 78MPa, respectively. In contrast, the elongation of 2519 aluminum alloy is decreased with Ag addition. The increase of tensile strength of 2519 aluminum alloy with Ag addition is attributed to the high volume fraction of Ω phase.展开更多
基金Project(52275350)supported by the National Natural Science Foundation of ChinaProject(0301006)supported by the International Cooperative Scientific Research Platform of SUES,China。
文摘In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 aluminum alloy are studied.The result show that ECAP induces numerous substructures and dislocations,effectively promoting the precipitation of theηʹphase exhibiting a bimodal structure during inter-pass aging.Following inter-pass aging and subsequent ECAP,the decrease in grain size(4.8μm)is together with the increase in dislocation density(1.24×10^(15) m^(−2))due to the pinning effect of the precipitated phase.Simultaneously,the dislocation motion causes the second phase particles to become even finer and more diffuse.The synergistic effects of precipitation strengthening,fine grain strengthening,and dislocation strengthening collectively enhance the high strength of aluminum alloys,with ultimate tensile strength and yield strength reaching approximately 610 and 565 MPa,respectively.Meanwhile,ductility remains largely unchanged,primarily due to coordinated grain boundary sliding and the uniform and fine dispersion of second phase particles.
基金Project(2021YFB3400900)supported by the National Key R&D Program of ChinaProjects(51905551,52205435)supported by the National Natural Science Foundation of China Youth Foundation+1 种基金Project(2022ZZTS0196)supported by the Fundamental Research Founds for the Central Universities,ChinaProject(CX20220282)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China。
文摘The asymmetric creep aging behaviors of a pre-treated Al-Zn-Mg-Cu alloy under high and low stresses have been investigated for high precision creep age forming application of aluminum integral panels.With the increase of applied stress,the creep strains under the tensile stresses are higher than those of compressive stresses and the asymmetry of creep strain is more obvious.However,the mechanical properties of tensile stress creep aged samples are lower than those of compressive stress creep aged samples.Dislocation density,dislocation moving velocity and the proportion of precipitates directly lead to the asymmetry of creep strain and mechanical properties after tensile-compressive creep aging process.In addition,the tensile and compressive stresses have little effect on the width of the precipitate-free zone(PFZ).It indicates that in the high stress creep age forming process of the pretreated Al-Zn-Mg-Cu alloy,the tensile stress promotes the dislocation motion to obtain a better creep strain but weakens its mechanical properties compared with the compressive stress.In the field of civil aviation aircraft component manufacturing,the introduction of tension and compression stress asymmetry into the creep constitutive model may improve the accuracy of creep age forming components.
基金Projects(52274404,52305441,U22A20190)supported by the National Natural Science Foundation of ChinaProjects(2022JJ20065,2023JJ40739)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2022RC1001)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2023ZZTS0972)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2021YFB3400903)supported by the National Key R&D Program of China。
文摘The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion.
基金Project(52205433)supported by the National Natural Science Foundation of China。
文摘Hot tensile tests were performed on Hastelloy C-276 alloy in the temperature range of 850−1150℃ and strain rate range of 0.01−10 s^(−1) to reveal its fracture characteristics and critical fracture failure conditions during high temperature deformation process.Short-term aging treatments were also conducted to analyze the effects of precipitation on the fracture behaviors in conjunction with the experimental results obtained from the hot tensile tests.It was observed that the main precipitates in Hastelloy C-276 alloy under hot tensile deformation and short-term aging treatment were identified as M_(6)C carbides,around which the microscopic voids nucleate when the external forces were applied.Considering the effects of deformation temperature and strain rate,two failure criteria based on Zener-Hollomon parameter were developed to describe the fracture behaviors of Hastelloy C-276 alloy deforming at elevated temperatures.Finite element method(FEM)coupling with the proposed failure criteria was used to examine the validity by comparing the predicted values with the experimental data,and the comparison results indicate that the established failure criteria were capable of predicting the fracture behaviors of Hastelloy C-276 alloy in hot deformation process.
文摘It is well known that the morphologies of the α’ martensite formed from the γ phase in ferrous alloys are classified into five types of lath, butterfly, (225)A type plate,lenticular and thin-plate. Among those α’ martensites, only the thin-plate martensite,which is characterized by containing a high density of transformation twins, has a potential of exhibiting a perfect shape memory (SM) effect.Recently the present authors found in Fe-Ni-Si alloys that the thin-plate martensite is formed by the introduction of fine and coherent γ’-(Ni,Fe)3Si particles with a L12 ordered structure in the austenite matrix due to ausaging. In the present study, the SM properties of the ausaged Fe-Ni-Si alloys with the thin-plate martensite are investigated by a conventional bending-test. The effects of the addition of Co to the Fe-Ni-Si alloys on the martensitic transformation and the SM properties are also investigated. It is shown that while the ausaged Fe-Ni-Si ternary alloys exhibit an imperfect SM effect due to reverse transformation from stress-induced thin-plate martensite to austenite, the SM properties are improved by the addition of Co. An almost perfect SM effect is confirmed in the Fe-Ni-Si-Co alloys by heating to 1 100 ℃ after deformation at -196 ℃.
基金Project(51801082) supported by National Natural Science Foundation of ChinaProjects(GY2021003, GY2021020)supported by the Key Research and Development Program of Zhenjiang City,China+1 种基金Project(KYCX21_3453) supported by Graduate Research and Innovation Projects in Jiangsu Province,ChinaProject(202110289002Z) supported by Undergraduate Innovation and Entrepreneurship Training Program of Jiangsu Province,China。
文摘In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick plate was investigated by hardness tests, electrical conductivity tests and transmission electron microscopy(TEM) observation.Results revealed that, during retrogression heating, the fine pre-precipitates in surface layer dissolve more and the undissolved η′ or η phases are more coarsened than that of center layer. During slow cooling after retrogression,precipitates continue coarsening but with a lower rate and the secondary precipitation occurs in both layers. Finer precipitates resulting from the secondary precipitation are more in surface. However, the coarsening and secondary precipitation behaviors are restrained in both layers under quick cooling condition. The electrical conductivity and through-thickness homogeneity of precipitates increases while the hardness decreases with cooling rate decreasing. After the optimized non-isothermal retrogression and re-ageing(NRRA) including air-cooling retrogression, the throughthickness homogeneity which is evaluated by integrated retrogression effects has been improved to 94%. The tensile strength, fracture toughness and exfoliation corrosion grade of Al-8Zn-2Mg-2Cu alloy plate is 619 MPa, 24.7 MPa·m^(1/2)and EB, respectively, which indicates that the non-isothermal retrogression and re-aging(NRRA) could improve the mechanical properties and corrosion resistance with higher through-thickness homogeneity.
基金Projects(2011BAE22B01,2011BAE22B06)supported by the National Key Technology R&D Program,China
文摘This paper studied the influence of aging treatment on the corrosion behavior and mechanism of Mg-Y alloys with different Y content through corrosion mass loss test, electrochemical test and corrosion morphologies observation. Results show that the peak-aging times of Mg-(0.25, 2.5, 5, 8 and 15) Y alloys at 250 ℃ were 4, 6, 10, 12 and 16 h. The aging treatment reduced the corrosion resistance of Mg-Y alloys, and the corrosion resistance of Mg-Y alloys became worse with increasing of the aging time. The change magnitude of the open circuit potentials for Mg-(0.25, 2.5)Y alloys was greater than that of Mg-(5, 8 and 15)-Y alloys. The polarization curves of Mg (0.25, 2.5, 5, 8 and 15) Y alloys had the similar shape after aging treatment, and the slopes of the anodic branch were greater than those of the cathodic branches. After aging treatment, the corrosion modes of Mg-0.25Y and Mg-(2.5, 5, 8 and 15) Y alloys were uniform corrosion and pitting corrosion with small local deep corrosion.
基金Projects(51371039,51871031)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘In this paper,the effect of cathodic polarization on corrosion behavior of AA7003 under three kinds of aging treatments(including peak aging(PA),double peak aging(DPA)and regression re-aging(RRA))was studied in 3.5 wt%sodium chloride solution through slow strain rate testing(SSRT)and electrochemical testing.X-ray diffraction(XRD)and scanning electron microscopy(SEM)methods were also applied to investigating corrosion behavior and fracture morphology.The results showed that under open circuit,stress corrosion cracking(SCC)of AA7003 might by classified as anodic dissolution.In this case,the extent of SCC susceptibility(ISCC)of AA7003 alloy with different aging treatments was as follows:ISCC(PA)>ISCC(DPA)>ISCC(RRA).On the other hand,stress corrosion cracking(SCC)of AA7003 under cathodic polarization might be classified as hydrogen embrittlement(HE)which had been proved in this paper by presence of AlH3 diffraction peak in XRD patterns.In this case,for AA7003 with any of the three aging treatments,hydrogen embrittlement susceptibility(IHE)increases with negatively shifting of cathodic polarization.
基金Project(2019JJ50054)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(51975201,U1664252)supported by the National Natural Science Foundation of China。
文摘The effects of aging treatments on the tensile properties and compressive behavior of a thin-walled 6005 aluminum alloy tube were studied.Samples after three natural aging(NA)conditions were subsequently aged at 180℃ for 0.5−12.0 h artificial aging(AA).Tensile and compressive tests were performed after AA.The results show that for samples with the same NA,the longer the AA time is,the higher the strengths alloy owns,and at the same time the material shows a much lower elongation and faster process from plastic deformation to fracture.However,with NA prolonging,the alloy exhibits much better plastic deformation ability after AA,though its strength is decreased.The major cause of strength and plasticity variation induced by changing NA time is that the size of the main strengtheningβ''precipitates is larger and the density is lower.This character is evaluated by the strain hardening exponent n.Compressive results show that the optimum energy absorption characteristics can be acquired at a moderate n(14<n<17).Large n(n≥18)results in the fracture of tube during axial compression while low n(n≤13)causes lower energy absorption.
基金Project(2005CB623706)supported by the State Key Fundamental Research and Development Programof China
文摘The effects of Ag on the microstructure and mechanical properties of 2519 aluminum alloy were investigated by means of tensile test, micro-hardness test, transmission electron microscope and scanning electron microscope. The results show that the addition of 0.3% (mass fraction) Ag accelerates 2519 aluminum alloy’s age-hardening, increases its peak hardness and reduces 4h of peak aged time at 180℃. The addition of 0.3%(mass fraction) Ag increses the tensile strength at room temperature and elevated temperature. This increment at room temperature and 200℃ is 24MPa and 78MPa, respectively. In contrast, the elongation of 2519 aluminum alloy is decreased with Ag addition. The increase of tensile strength of 2519 aluminum alloy with Ag addition is attributed to the high volume fraction of Ω phase.