Recently, Mao, Zhang, Wu et al. constructed two key exchange(KE) protocols based on tensor ergodic problem(TEP). Although they conjectured that these constructions can potentially resist quantum computing attack, they...Recently, Mao, Zhang, Wu et al. constructed two key exchange(KE) protocols based on tensor ergodic problem(TEP). Although they conjectured that these constructions can potentially resist quantum computing attack, they did not provide a rigorous security proof for their KE protocols. In this paper, applying the properties of ergodic matrix, we first present a polynomial time algorithm to solve the TEP problem using O(n^6) arithmetic operations in the finite field, where n is the security parameter. Then, applying this polynomial time algorithm, we generate a common shared key for two TEP-based KE constructions, respectively. In addition, we also provide a polynomial time algorithm with O(n^6) arithmetic operations that directly recovers the plaintext from a ciphertext for the KE-based encryption scheme. Thus, the TEP-based KE protocols and their corresponding encryption schemes are insecure.展开更多
The formal modelling and verification method has become an effective way of improving the reliability and correctness of complex,safety-critical embedded systems.Statecharts are widely used to formally model embedded ...The formal modelling and verification method has become an effective way of improving the reliability and correctness of complex,safety-critical embedded systems.Statecharts are widely used to formally model embedded applications,but they do not realise the reasonable separation of system concerns,which would result in code scattering and tangling.Aspect-Oriented Software Development(AOSD)technology could separate crosscutting concerns from core concerns and identify potential problems in the early phase of the software development life cycle.Therefore,the paper proposes aspect-oriented timed statecharts(extended timed statecharts with AOSD)to separately model base functional requirements and other requirements(e.g.,scheduling,error handling),thereby improving the modularity and development efficiency of embedded systems.Furthermore,the dynamic behaviours of embedded systems are simulated and analysed to determine whether the model satisfies certain properties(e.g.,liveness,safety)described by computation tree logic formulae.Finally,a given case demonstrates some desired properties processed with respect to the aspect-oriented timed statecharts model.展开更多
基金supported by the National Natural Science Foundation of China(No.61672270,61602216,61702236)the Qing Lan Project for Young Researchers of Jiangsu Province of China(No.KYQ14004)+1 种基金the Open Fund of State Key Laboratory of Information Security,Institute of Information Engineering,Chinese Academy of Sciences(No.2015-MSB-10)Jiangsu Overseas Research&Training Program for University Prominent Young&Middle-aged Teachers and Presidents,Changzhou Sci&Tech Program,(Grant No.CJ20179027)
文摘Recently, Mao, Zhang, Wu et al. constructed two key exchange(KE) protocols based on tensor ergodic problem(TEP). Although they conjectured that these constructions can potentially resist quantum computing attack, they did not provide a rigorous security proof for their KE protocols. In this paper, applying the properties of ergodic matrix, we first present a polynomial time algorithm to solve the TEP problem using O(n^6) arithmetic operations in the finite field, where n is the security parameter. Then, applying this polynomial time algorithm, we generate a common shared key for two TEP-based KE constructions, respectively. In addition, we also provide a polynomial time algorithm with O(n^6) arithmetic operations that directly recovers the plaintext from a ciphertext for the KE-based encryption scheme. Thus, the TEP-based KE protocols and their corresponding encryption schemes are insecure.
基金supported by the National Natural Science Foundation of China under GrantsNo.61173048,No.61103115
文摘The formal modelling and verification method has become an effective way of improving the reliability and correctness of complex,safety-critical embedded systems.Statecharts are widely used to formally model embedded applications,but they do not realise the reasonable separation of system concerns,which would result in code scattering and tangling.Aspect-Oriented Software Development(AOSD)technology could separate crosscutting concerns from core concerns and identify potential problems in the early phase of the software development life cycle.Therefore,the paper proposes aspect-oriented timed statecharts(extended timed statecharts with AOSD)to separately model base functional requirements and other requirements(e.g.,scheduling,error handling),thereby improving the modularity and development efficiency of embedded systems.Furthermore,the dynamic behaviours of embedded systems are simulated and analysed to determine whether the model satisfies certain properties(e.g.,liveness,safety)described by computation tree logic formulae.Finally,a given case demonstrates some desired properties processed with respect to the aspect-oriented timed statecharts model.