This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter...This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.展开更多
An uncertain nonlinear discrete-time system model with time-varying input delays for networked control systems (NCSs) is presented. The problem of exponential stability for the system is considered and some new criter...An uncertain nonlinear discrete-time system model with time-varying input delays for networked control systems (NCSs) is presented. The problem of exponential stability for the system is considered and some new criteria of exponential stability are obtained based on norm inequality methods. A numerical example is given todemonstrate that those criteria are useful to analyzing the stability of nonlinear NCSs.展开更多
The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided...The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided to guarantee the global exponentially stability of such systems. For the delayed Hopfield neural networks with time-varying external inputs, new criteria are also acquired for the existence and exponentially stability of periodic solutions. The results are generalizations and improvements of some recent achievements reported in the literature on networks with time delays.展开更多
基金supported by the Na⁃tional Key R&D Program of China(No.2022YFC2204800)the Graduate Student Independent Exploration and Innovation Program of Central South University(No.2024ZZTS 0767).
文摘This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.
文摘An uncertain nonlinear discrete-time system model with time-varying input delays for networked control systems (NCSs) is presented. The problem of exponential stability for the system is considered and some new criteria of exponential stability are obtained based on norm inequality methods. A numerical example is given todemonstrate that those criteria are useful to analyzing the stability of nonlinear NCSs.
基金the Science Foundation of Guangdong Province in China
文摘The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided to guarantee the global exponentially stability of such systems. For the delayed Hopfield neural networks with time-varying external inputs, new criteria are also acquired for the existence and exponentially stability of periodic solutions. The results are generalizations and improvements of some recent achievements reported in the literature on networks with time delays.