期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合时序门控图神经网络的兴趣点推荐方法
1
作者 唐宏 刘斌 +1 位作者 张静 金哲正 《计算机工程与应用》 CSCD 北大核心 2024年第16期124-132,共9页
现有的大多数兴趣点(point of interest,POI)推荐系统由于忽略了用户签到序列中的顺序行为模式,以及用户的个性化偏好对于POI推荐的影响,导致POI推荐系统性能较低,推荐结果不可靠,进而影响用户体验。为了解决上述问题,提出一种融合时序... 现有的大多数兴趣点(point of interest,POI)推荐系统由于忽略了用户签到序列中的顺序行为模式,以及用户的个性化偏好对于POI推荐的影响,导致POI推荐系统性能较低,推荐结果不可靠,进而影响用户体验。为了解决上述问题,提出一种融合时序门控图神经网络的兴趣点推荐方法。运用时序门控图神经网络(temporal gated graph neural network,TGGNN)学习POI embedding;采用注意力机制捕获用户的长期偏好;通过注意力机制融合用户的最新偏好和实时偏好,进而捕获用户的短期偏好。通过自适应的方式结合用户的长期和短期偏好,计算候选POI的推荐得分,并根据得分为用户进行POI推荐。实验结果表明,与现有方法相比,该方法在召回率和平均倒数排名这两项指标上均有较为明显的提升,因此可以取得很好的推荐效果,具有良好的应用前景。 展开更多
关键词 兴趣点推荐 注意力机制 时序门控图神经网络 窗口池化 实时偏好
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部