期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于时序关系网络的逻辑推理方法
被引量:
3
1
作者
张姝楠
曹峰
+1 位作者
郭倩
钱宇华
《计算机科学》
CSCD
北大核心
2021年第5期239-246,共8页
逻辑推理是人类智能的核心,是人工智能领域一个富有挑战性的研究课题。人类的IQ测试问题是衡量人类智商水平高低和逻辑推理能力的常用手段之一,如何让计算机学习拥有类似人类的逻辑推理能力是一个非常重要的研究内容,其目的是使计算机...
逻辑推理是人类智能的核心,是人工智能领域一个富有挑战性的研究课题。人类的IQ测试问题是衡量人类智商水平高低和逻辑推理能力的常用手段之一,如何让计算机学习拥有类似人类的逻辑推理能力是一个非常重要的研究内容,其目的是使计算机从给定的图像中直接学习逻辑推理模式,而无需事先为计算机设计先验推理模式。基于此目的,提出了一种新的数据集Fashion-IQ,该数据集中的每个样本包含7张输入图片和1个标签,这7张图片分别为3张包含一种或多种逻辑的问题输入图片和4张选项输入图片,目的是利用机器学习3张问题输入图片中包含的逻辑来预测下一张图片,从而选择正确的选项。为了解决这个问题,提出了一种时序关系模型。针对每个选项,该模型首先使用卷积神经网络提取前3张输入图片和选项图片的空间特征;接着采用关系网络将这4个空间特征两两组合;然后采用LSTM提取前3张问题输入图片和该选项的时序特征,将时序特征与组合好的空间特征相结合得到时序-空间融合特征;最后对前3张输入图片与每个选项得到的时序-空间融合特征进行进一步推理,采用softmax函数进行打分,得分最高的选项就是正确答案。实验结果证明,该模型在此数据集上实现了比较高的推理准确度。
展开更多
关键词
逻辑推理
IQ测试
推理模式
时序
关系网络
时序
-空间
融合
特征
在线阅读
下载PDF
职称材料
基于注意力机制—门控循环单元—BP神经网络的智能多工序工艺参数关联预测
被引量:
2
2
作者
阴艳超
张曦
+1 位作者
唐军
张万达
《计算机集成制造系统》
EI
CSCD
北大核心
2023年第2期487-502,共16页
鉴于流程制造工序间能质流耦合严重,性能指标影响因素众多,工艺参数时序特征显著,现有制造模式下难以精准预测产品质量,在分析流程制造工艺性能指标多维、强时序、关联耦合特征的基础上,提出一种基于注意力机制—门控循环单元-BP神经网...
鉴于流程制造工序间能质流耦合严重,性能指标影响因素众多,工艺参数时序特征显著,现有制造模式下难以精准预测产品质量,在分析流程制造工艺性能指标多维、强时序、关联耦合特征的基础上,提出一种基于注意力机制—门控循环单元-BP神经网络(Attention AM-GRU-BPNN)的多工序耦合参数关联预测方法。首先采用互信息方法筛选多态异构生产数据作为输入,建立ConvGRU自编码器,通过无监督学习对过程数据、工艺参数、操作参数等进行时序特征提取,同时引入时序注意力机制提取不同工序的耦合关联特征并进行向量嵌入,为不同工序的工艺参数分配注意力权重。在此基础上,设计Attention网络自学习不同时刻下工艺关联特征对质量性能指标的影响差异,再通过门控循环单元网络对重要的关联特征进行增强,并按照时序特征对单工序预测模型进行聚合,实现多工序时序特征融合,最后通过输出层BPNN神经网络精准预测产品工艺质量。实验表明,AM-GRU-BPNN有效提高了预测精度,从多工序角度为生产线工序的加工过程控制提供了依据。
展开更多
关键词
流程制造
多工序耦合
注意力机制—门控循环单元-BP神经网络
时序特征融合
关联预测
在线阅读
下载PDF
职称材料
题名
一种基于时序关系网络的逻辑推理方法
被引量:
3
1
作者
张姝楠
曹峰
郭倩
钱宇华
机构
山西大学大数据科学与产业研究院
山西大学计算机与信息技术学院
山西大学计算智能与中文信息处理教育部重点实验室
出处
《计算机科学》
CSCD
北大核心
2021年第5期239-246,共8页
基金
国家自然科学基金项目(61672332,61802238,61603228,62006146,F060308)
山西省拔尖创新人才支持计划
+3 种基金
山西省重点研发计划(国际科技合作)项目(201903D421003)
山西省三晋学者
山西省回国留学人员科研项目(2017023,2018172,HGKY2019001)
山西省青年基金项目(201901D211171,201901D211169)。
文摘
逻辑推理是人类智能的核心,是人工智能领域一个富有挑战性的研究课题。人类的IQ测试问题是衡量人类智商水平高低和逻辑推理能力的常用手段之一,如何让计算机学习拥有类似人类的逻辑推理能力是一个非常重要的研究内容,其目的是使计算机从给定的图像中直接学习逻辑推理模式,而无需事先为计算机设计先验推理模式。基于此目的,提出了一种新的数据集Fashion-IQ,该数据集中的每个样本包含7张输入图片和1个标签,这7张图片分别为3张包含一种或多种逻辑的问题输入图片和4张选项输入图片,目的是利用机器学习3张问题输入图片中包含的逻辑来预测下一张图片,从而选择正确的选项。为了解决这个问题,提出了一种时序关系模型。针对每个选项,该模型首先使用卷积神经网络提取前3张输入图片和选项图片的空间特征;接着采用关系网络将这4个空间特征两两组合;然后采用LSTM提取前3张问题输入图片和该选项的时序特征,将时序特征与组合好的空间特征相结合得到时序-空间融合特征;最后对前3张输入图片与每个选项得到的时序-空间融合特征进行进一步推理,采用softmax函数进行打分,得分最高的选项就是正确答案。实验结果证明,该模型在此数据集上实现了比较高的推理准确度。
关键词
逻辑推理
IQ测试
推理模式
时序
关系网络
时序
-空间
融合
特征
Keywords
Logical reasoning
IQ test
Inference pattern
Temporal relation network
Temporal-spatial fusion features
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
基于注意力机制—门控循环单元—BP神经网络的智能多工序工艺参数关联预测
被引量:
2
2
作者
阴艳超
张曦
唐军
张万达
机构
昆明理工大学机电工程学院
云南中烟工业有限责任公司
出处
《计算机集成制造系统》
EI
CSCD
北大核心
2023年第2期487-502,共16页
基金
国家自然科学基金资助项目(52065033)
云南省重大科技资助项目(202202AG050002)。
文摘
鉴于流程制造工序间能质流耦合严重,性能指标影响因素众多,工艺参数时序特征显著,现有制造模式下难以精准预测产品质量,在分析流程制造工艺性能指标多维、强时序、关联耦合特征的基础上,提出一种基于注意力机制—门控循环单元-BP神经网络(Attention AM-GRU-BPNN)的多工序耦合参数关联预测方法。首先采用互信息方法筛选多态异构生产数据作为输入,建立ConvGRU自编码器,通过无监督学习对过程数据、工艺参数、操作参数等进行时序特征提取,同时引入时序注意力机制提取不同工序的耦合关联特征并进行向量嵌入,为不同工序的工艺参数分配注意力权重。在此基础上,设计Attention网络自学习不同时刻下工艺关联特征对质量性能指标的影响差异,再通过门控循环单元网络对重要的关联特征进行增强,并按照时序特征对单工序预测模型进行聚合,实现多工序时序特征融合,最后通过输出层BPNN神经网络精准预测产品工艺质量。实验表明,AM-GRU-BPNN有效提高了预测精度,从多工序角度为生产线工序的加工过程控制提供了依据。
关键词
流程制造
多工序耦合
注意力机制—门控循环单元-BP神经网络
时序特征融合
关联预测
Keywords
process manufacturing
multi-process coupling
attention model—gated recurrent unit—back propagation neural network
temporal sequence feature fusion
correlation prediction
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于时序关系网络的逻辑推理方法
张姝楠
曹峰
郭倩
钱宇华
《计算机科学》
CSCD
北大核心
2021
3
在线阅读
下载PDF
职称材料
2
基于注意力机制—门控循环单元—BP神经网络的智能多工序工艺参数关联预测
阴艳超
张曦
唐军
张万达
《计算机集成制造系统》
EI
CSCD
北大核心
2023
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部