期刊文献+
共找到251篇文章
< 1 2 13 >
每页显示 20 50 100
基于K-means聚类和特征空间增强的噪声标签深度学习算法 被引量:2
1
作者 吕佳 邱小龙 《智能系统学报》 CSCD 北大核心 2024年第2期267-277,共11页
深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样... 深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样本集赋予伪标签。然而,错误的伪标签以及训练样本数量不足的问题仍然限制着噪声标签学习算法性能的提升。为解决上述问题,提出基于K-means聚类和特征空间增强的噪声标签深度学习算法。首先,该算法利用K-means聚类算法对干净样本集进行标签聚类,并根据噪声样本集与聚类中心的距离大小筛选出难以分类的噪声样本,以提高训练样本的质量;其次,使用mixup算法扩充干净样本集和噪声样本集,以增加训练样本的数量;最后,采用特征空间增强算法抑制mixup算法新生成的噪声样本,从而提高网络的分类准确率。并在CIFAR10、CIFAR100、MNIST和ANIMAL-10共4个数据集上试验验证了该算法的有效性。 展开更多
关键词 噪声标签学习 深度学习 半监督学习 机器学习 神经网络 k-means 特征空间增强 mixup算
在线阅读 下载PDF
结合人工蜂群与K-means聚类的特征选择 被引量:3
2
作者 孙林 刘梦含 薛占熬 《计算机科学与探索》 CSCD 北大核心 2024年第1期93-110,共18页
K-means聚类是一种简捷高效、收敛速度快且易于实现的统计分析方法,但是传统的K-means聚类算法对初始聚类中心的选取敏感且易陷入局部最优,同时多数无监督特征选择算法容易忽视特征之间的联系。为此,提出了一种结合人工蜂群与K-means聚... K-means聚类是一种简捷高效、收敛速度快且易于实现的统计分析方法,但是传统的K-means聚类算法对初始聚类中心的选取敏感且易陷入局部最优,同时多数无监督特征选择算法容易忽视特征之间的联系。为此,提出了一种结合人工蜂群与K-means聚类的特征选择方法。首先,为了使同一簇中样本的相似度高而不同簇中样本的相似度低,基于簇内聚集度和簇间离散度构建了新的适应度函数,更好地反映各样本的特性,进而构建了蜜源被选择新的概率表达式;其次,设计了随着迭代次数的增加而数值逐渐减小的权重,提出了使蜂群搜索范围动态缩进的蜜源位置更新表达式;然后,为了弥补传统的欧氏距离在计算距离时仅考虑向量之间的累积差异而表现出的局限性,构造了同时考虑样本影响程度不同以及样本的相似性的加权欧氏距离表达式;最后,引入标准差和距离相关系数,定义了特征区分度与特征代表性,以二者之积度量特征重要性。实验结果表明,所提算法加快了人工蜂群算法的收敛速度并提高了K-means算法的聚类效果,同时也有效地提升了特征选择的分类效果。 展开更多
关键词 特征选择 人工蜂群 k-means 特征重要度
在线阅读 下载PDF
基于自适应布谷鸟优化特征选择的K-means聚类 被引量:8
3
作者 孙林 刘梦含 《计算机应用》 CSCD 北大核心 2024年第3期831-841,共11页
K-means聚类算法随机确定初始聚类数目,而且原始数据集中含有大量的冗余特征会导致聚类时精度降低,而布谷鸟搜索(CS)算法存在收敛速度慢和局部搜索能力弱等问题,为此提出一种基于自适应布谷鸟优化特征选择的K-means聚类算法(DCFSK)。首... K-means聚类算法随机确定初始聚类数目,而且原始数据集中含有大量的冗余特征会导致聚类时精度降低,而布谷鸟搜索(CS)算法存在收敛速度慢和局部搜索能力弱等问题,为此提出一种基于自适应布谷鸟优化特征选择的K-means聚类算法(DCFSK)。首先,为提升CS算法的搜索速度和精度,在莱维飞行阶段,设计了自适应步长因子;为调节CS算法全局搜索和局部搜索之间的平衡、加快CS算法的收敛,动态调整发现概率,进而提出改进的动态CS算法(IDCS),在IDCS的基础上构建了结合动态CS的特征选择算法(DCFS)。其次,为提升传统欧氏距离的计算精确度,设计同时考虑样本和特征对距离计算贡献程度的加权欧氏距离;为了确定最佳聚类数目的选取方法,依据改进的加权欧氏距离构造了加权簇内距离和簇间距离。最后,为克服传统K-means聚类目标函数仅考虑簇内的距离而未考虑簇间距离的缺陷,提出基于中位数的轮廓系数的目标函数,进而设计了DCFSK。实验结果表明,在10个基准测试函数上,IDCS的各项指标取得了较优的结果;相较于K-means、DBSCAN(Density-Based Spatial Clustering of Applications with Noise)等算法,在6个合成数据集与6个UCI数据集上,DCFSK的聚类效果最佳。 展开更多
关键词 布谷鸟搜索算 k-means 欧氏距离 特征选择 轮廓系数
在线阅读 下载PDF
基于特征关联度的K-means初始聚类中心优化算法 被引量:29
4
作者 陈兴蜀 吴小松 +1 位作者 王文贤 王海舟 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2015年第1期13-19,共7页
针对K-means算法在进行文本聚类时对初始聚类中心敏感的问题,提出基于特征关联度的初始聚类中心选择算法。由于在原始文本集中不易找到类别代表性都较强的多个独立文本作为初始聚类中心,因此先从降维后的文本特征集合中,选取关联度大的... 针对K-means算法在进行文本聚类时对初始聚类中心敏感的问题,提出基于特征关联度的初始聚类中心选择算法。由于在原始文本集中不易找到类别代表性都较强的多个独立文本作为初始聚类中心,因此先从降维后的文本特征集合中,选取关联度大的特征构造新的文本集,再利用"或运算"合并其中的相似文本得到初始聚类中心候选集,最后通过计算文本密度并结合"最小最大"原则从候选集中选取最优的初始中心。在5个数据集上进行对比实验,该算法在多数聚类结果中的F-score值都高于90%,熵值低于0.5,明显优于Mahout提供的K-means算法,表明该算法可选出高质量的初始聚类中心,得到更好的聚类结果。 展开更多
关键词 k-means 特征关联度 初始中心 文本
在线阅读 下载PDF
基于邻域互信息与K-means特征聚类的特征选择 被引量:3
5
作者 孙林 梁娜 徐久成 《智能系统学报》 CSCD 北大核心 2024年第4期983-996,共14页
针对多数邻域系统通过人工调试很难搜索到最佳邻域半径,以及传统的K-means聚类需要随机选取簇中心和指定簇的数目等问题,提出了一种基于邻域互信息与K-means特征聚类的特征选择方法。首先,将样本在各特征下与其他样本距离的平均值作为... 针对多数邻域系统通过人工调试很难搜索到最佳邻域半径,以及传统的K-means聚类需要随机选取簇中心和指定簇的数目等问题,提出了一种基于邻域互信息与K-means特征聚类的特征选择方法。首先,将样本在各特征下与其他样本距离的平均值作为自适应邻域半径,确定样本的邻域集,并由此构建自适应邻域熵、邻域互信息、归一化邻域互信息等度量,反映特征之间的相关性;然后,基于归一化邻域互信息构建自适应K近邻集合,利用Pearson相关系数表示特征的权重定义加权K近邻密度,实现自动选取K-means算法的簇中心,进而完成K-means特征聚类;最后,给出加权平均冗余度,选出每个特征簇中加权平均冗余度最大的特征构成最优特征子集。实验结果表明所提算法不仅可以有效提升特征选择的分类结果而且可以获得更好的聚类效果。 展开更多
关键词 特征选择 邻域互信息 k-means 特征 自适应K近邻 特征权重 加权K近邻密度
在线阅读 下载PDF
基于K-means聚类及模糊判别的卷烟包灰性能综合评价方法 被引量:1
6
作者 楚文娟 郭丽霞 +5 位作者 程东旭 王红霞 崔廷 冯银龙 王建民 鲁平 《轻工学报》 CAS 北大核心 2024年第6期93-100,共8页
为实现卷烟包灰性能的综合评价和评价结果具象化,以49个卷烟的灰色、裂口率、缩灰率、碳线宽度、碳线整齐度测定结果为原始变量,先运用K-means聚类、模糊判别法将原始变量转换为具象化的得分数据,再运用Critic赋权法赋予各项指标权重,... 为实现卷烟包灰性能的综合评价和评价结果具象化,以49个卷烟的灰色、裂口率、缩灰率、碳线宽度、碳线整齐度测定结果为原始变量,先运用K-means聚类、模糊判别法将原始变量转换为具象化的得分数据,再运用Critic赋权法赋予各项指标权重,建立了一种卷烟包灰性能综合评价方法。结果表明:将原始变量转换成区间为60~100、平均值在80左右的得分,可使评价结果具象化且更加符合认知习惯;5项指标的权重由高到低依次为裂口率(0.27)>缩灰率(0.25)>灰色(0.18)>碳线整齐度(0.16)>碳线宽度(0.14);卷烟包灰性能可划分为优、良、差三档,各档得分区间依次为(85,100]、[75,85]、[60,75);不同档次代表性卷烟的灰柱视觉效果对比结果证明,综合得分可客观反映卷烟包灰性能的优劣。 展开更多
关键词 卷烟 包灰性能 k-means 模糊判别 Critic赋权
在线阅读 下载PDF
结合初始中心优化和特征加权的K-Means聚类算法 被引量:19
7
作者 王宏杰 师彦文 《计算机科学》 CSCD 北大核心 2017年第B11期457-459,502,共4页
为了提高传统K-Means聚类算法的聚类准确性,提出一种结合初始中心优化和特征加权的改进K-Means聚类算法。首先,根据样本特征对聚类的贡献程度获得初始特征权重,构建一种加权距离度量。其次,利用提出的初始聚类中心选择方法获得k个初始... 为了提高传统K-Means聚类算法的聚类准确性,提出一种结合初始中心优化和特征加权的改进K-Means聚类算法。首先,根据样本特征对聚类的贡献程度获得初始特征权重,构建一种加权距离度量。其次,利用提出的初始聚类中心选择方法获得k个初始聚类中心,并结合初始特征权重进行初步聚类。然后,根据聚类精度来调整特征权重并再次执行聚类过程。重复执行上述过程直到聚类精度不再变化,获得最终的聚类结果。在UCI数据库上的实验结果表明,与现有相关K-Means聚类算法相比,该算法具有较高的聚类准确性。 展开更多
关键词 k-means 贡献因子 特征加权 初始中心优化
在线阅读 下载PDF
基于字符串相似度的URL聚类方法研究
8
作者 刘翼 田亮亮 +2 位作者 高明 李凯茵 叶倩 《现代电子技术》 北大核心 2025年第11期84-88,共5页
内容分发网络(CDN)被用于解决网络访问负荷过载的问题。然而,同一网络服务可能包含多个域名,导致网页主题分类结果精确度和检索效率降低。文中提出一种基于字符串相似度算法的URL聚类方法,首先,获取校园网络7×24 h的真实流量数据,... 内容分发网络(CDN)被用于解决网络访问负荷过载的问题。然而,同一网络服务可能包含多个域名,导致网页主题分类结果精确度和检索效率降低。文中提出一种基于字符串相似度算法的URL聚类方法,首先,获取校园网络7×24 h的真实流量数据,利用协议分析抽取特征信息,转化为数据集;其次,进行数据清洗与处理,去除缺省字段和错误字段,将相同数据条目集成;最后,采用字符串相似度算法计算URL之间的距离作为聚类算法的特征,并采用K-means聚类算法划分相似URL,达到将多个不同域名分类到相同网络服务的目的。实验通过对5种不同方法进行比较发现,Levenshtein算法的平均轮廓系数达到了91.4%,较其他方法平均提高12%,能够有效应对精确度降低和检索效率低下的问题。 展开更多
关键词 数据 字符串相似度 轮廓系数 协议分析 k-means URL CDN Levenshtein算
在线阅读 下载PDF
结合卷积神经网络多层特征融合和K-Means聚类的服装图像检索方法 被引量:19
9
作者 侯媛媛 何儒汉 +1 位作者 李敏 陈佳 《计算机科学》 CSCD 北大核心 2019年第B06期215-221,共7页
随着服装电子商务的蓬勃发展,海量的服装图像数据被累积,对服装图像“以图搜图”成为了当前的一个热点研究方向。服装图像有着丰富的整体语义信息和大量细节信息,要对其实现精准检索是一项挑战性难题。传统的基于人工语义标注的服装图... 随着服装电子商务的蓬勃发展,海量的服装图像数据被累积,对服装图像“以图搜图”成为了当前的一个热点研究方向。服装图像有着丰富的整体语义信息和大量细节信息,要对其实现精准检索是一项挑战性难题。传统的基于人工语义标注的服装图像方法和以人工设计的颜色与纹理等内容特征进行服装图像检索的方法均存在较大局限性。文中利用卷积神经网络多层特征融合提取特征,然后使用K-Means聚类加快服装图像的检索,充分利用深度卷积神经网络在图像特征提取上的有效性和层次性,融合不同卷积层次特征的细节信息和抽象语义信息以提升检索的准确度,并利用K-Means加快检索速度。所提方法首先对服装图像数据集进行统一的尺寸处理,然后利用卷积神经网络进行训练和特征提取,抽取出服装图像从低到高的多层次特征,进而将多种层次的特征进行融合,最终使用K-Means聚类方法对提取的图像库特征进行有效检索。在DeepFashion子类数据集Category and Attribute Prediction Benchmark和In-shop Clothes Retrieval Benchmark上的实验结果表明,所提方法能有效增强服装图像的特征表达能力,提高了检索准确率和检索速度,优于其他主流方法。 展开更多
关键词 服装图像检索 卷积神经网络 特征融合 k-means
在线阅读 下载PDF
基于聚类模型的C-RAN组网规划方法研究
10
作者 李恒毅 杨国 +1 位作者 魏波 陈虹君 《计算机科学》 北大核心 2025年第S1期832-835,共4页
随着5G通信网络的快速部署,其在信息化社会建设中的重要性日益凸显。5G异构化网络技术和集中式C-RAN组网方式的应用,虽然带来了高效的小区边缘协同处理和成本节约,但也引发了前传网络体量过大和传输线路建设成本增加的问题。为解决这一... 随着5G通信网络的快速部署,其在信息化社会建设中的重要性日益凸显。5G异构化网络技术和集中式C-RAN组网方式的应用,虽然带来了高效的小区边缘协同处理和成本节约,但也引发了前传网络体量过大和传输线路建设成本增加的问题。为解决这一问题,提出一种基于聚类算法和启发式算法的基站工程规划方法,对C-RAN基站的最佳部署位置进行研究。该方法通过构建K-means聚类模型,以基站与AAU/RRU间的欧氏距离作为约束,寻求最优的基站部署位置。在仿真与结果分析中结合手肘法判断最优聚类K值。以此为依据确定的C-RAN站点位置部署较为合理,能够保证连接到每一个无线收发点,并且消耗的光缆成本最低。此方法具有较好的可推广性,能够为未来的移动通信网络规划和建设提供有益的参考。 展开更多
关键词 C-RAN组网 基站规划 k-means 手肘 粒子群优化算
在线阅读 下载PDF
基于改进K-Means聚类和BP神经网络的台区线损率计算方法 被引量:176
11
作者 李亚 刘丽平 +3 位作者 李柏青 易俊 王泽忠 田世明 《中国电机工程学报》 EI CSCD 北大核心 2016年第17期4543-4551,共9页
配电网线损管理中面临的主要问题有表计配置不齐备、运行数据不易收集、元件和节点数过多。这些问题导致线损率计算工作十分繁杂。提出了一种基于改进K-Means聚类算法和Levenberg-Marquardt(LM)算法优化的BP神经网络模型快速计算低压台... 配电网线损管理中面临的主要问题有表计配置不齐备、运行数据不易收集、元件和节点数过多。这些问题导致线损率计算工作十分繁杂。提出了一种基于改进K-Means聚类算法和Levenberg-Marquardt(LM)算法优化的BP神经网络模型快速计算低压台区线损率的方法,并通过编程加以实现。根据样本的电气特征参数,提出了改进K-Means聚类算法,将台区样本分类,解决了台区线损率数值分散的问题。在此基础上,采用LM算法优化的BP神经网络模型对样本数据按类进行训练,利用BP神经网络拟合样本线损率与电气特征参数之间的关系,得到其变化规律。以某地区601个台区样本数据为例进行仿真计算,验证了所提方法的准确性。结果表明,与标准BP神经网络模型相比,LM算法优化的BP神经网络模型具有快速收敛、高精度等优点。 展开更多
关键词 低压台区 电气特征参数 线损率 改进k-means LM算优化的BP神经网络
在线阅读 下载PDF
一种改进的K-means聚类算法的图像检索方法 被引量:18
12
作者 吕明磊 刘冬梅 曾智勇 《计算机科学》 CSCD 北大核心 2013年第8期285-288,共4页
分析了K-means聚类算法在图像检索中的缺点,提出了一种改进的K-means聚类算法的图像检索方法。它首先计算图像特征库里面的所有颜色直方图特征之间的欧氏距离;然后根据"两个对象距离越近,相似度越大"[1]这一原理,找到符合条... 分析了K-means聚类算法在图像检索中的缺点,提出了一种改进的K-means聚类算法的图像检索方法。它首先计算图像特征库里面的所有颜色直方图特征之间的欧氏距离;然后根据"两个对象距离越近,相似度越大"[1]这一原理,找到符合条件的特征向量作为K-means聚类的初始类心进行聚类;最后进行图像检索。实验结果表明,本算法具有较高的检索准确率。 展开更多
关键词 k-means 颜色直方图特征 图像检索 特征提取
在线阅读 下载PDF
基于K-means聚类的路面裂缝分割算法 被引量:31
13
作者 李鹏 李强 +1 位作者 马味敏 蒋威 《计算机工程与设计》 北大核心 2020年第11期3143-3147,共5页
针对传统分割算法在非均匀背景中存在低抗噪性及高复杂性的问题,将聚类分析和区域生长算法相结合,提出基于K-means聚类的路面裂缝区域生长分割算法。依据图像灰度像素特征进行裂缝目标聚类,融合裂缝几何纹理特征将聚类中心值作为种子点... 针对传统分割算法在非均匀背景中存在低抗噪性及高复杂性的问题,将聚类分析和区域生长算法相结合,提出基于K-means聚类的路面裂缝区域生长分割算法。依据图像灰度像素特征进行裂缝目标聚类,融合裂缝几何纹理特征将聚类中心值作为种子点区域生长,经过形态学滤波优化处理完成精确分割。仿真结果表明,该算法在视觉上裂缝分割的准确率提高,查准率曲线和受试者工作特征曲线的评价结果也表明,该算法与传统边缘检测算法相比,具有环境适应能力强、识别准确率高以及性能稳定等优势。 展开更多
关键词 裂缝检测 k-means 区域生长 查准率曲线 受试者工作特征曲线
在线阅读 下载PDF
一种基于SOM和K-means的文档聚类算法 被引量:16
14
作者 杨占华 杨燕 《计算机应用研究》 CSCD 北大核心 2006年第5期73-74,79,共3页
提出了一种把自组织特征映射SOM和K-means算法结合的聚类组合算法。先用SOM对文档聚类,然后以SOM的输出权值初始化K-means的聚类中心,再用K-means算法对文档聚类。实验结果表明,该聚类组合算法能改进文档聚类的性能。
关键词 自组织特征映射 k-means 组合方 文档
在线阅读 下载PDF
集成k-means聚类和有监督特征选择的混合式协同过滤推荐 被引量:5
15
作者 李晓艳 张子刚 张逸石 《管理学报》 CSSCI 北大核心 2013年第9期1362-1367,共6页
为了提高协同过滤推荐质量,提出了集成k-means聚类和有监督特征选择的混合式协同过滤推荐框架和KDICF算法。利用有监督特征选择的方法和技术,找出与待预测项目强相关的项目集,将高维稀疏的用户-项目评分数据集转为低维用户-项目评分数据... 为了提高协同过滤推荐质量,提出了集成k-means聚类和有监督特征选择的混合式协同过滤推荐框架和KDICF算法。利用有监督特征选择的方法和技术,找出与待预测项目强相关的项目集,将高维稀疏的用户-项目评分数据集转为低维用户-项目评分数据集,并运用k-means聚类,在此基础上寻找近邻用户对目标用户未评分项目进行评分预测。实验结果表明,混合式KDICF算法有着优异的性能。 展开更多
关键词 有监督特征选择 协同过滤推荐 k-means
在线阅读 下载PDF
基于K-means聚类法的茶叶嫩芽识别研究 被引量:24
16
作者 吴雪梅 唐仙 +1 位作者 张富贵 顾金梅 《中国农机化学报》 2015年第5期161-164,179,共5页
以数码相机采集的茶叶图像为对象,研究茶叶嫩芽的识别方法。采用基于Lab颜色模型中a分量、b分量信息的K-means聚类法识别彩色图像中的茶叶嫩芽。对不同距离采集的茶叶图像,对比分析Ostu法(最大方差自动取阈法)和3个聚类中心的K-means聚... 以数码相机采集的茶叶图像为对象,研究茶叶嫩芽的识别方法。采用基于Lab颜色模型中a分量、b分量信息的K-means聚类法识别彩色图像中的茶叶嫩芽。对不同距离采集的茶叶图像,对比分析Ostu法(最大方差自动取阈法)和3个聚类中心的K-means聚类法的目标识别效果和识别效率。结果表明,Ostu法虽然可以完成嫩芽的识别,平均识别率在89%左右,但不能较好的保证分割后嫩芽的完整度。基Lab颜色模型和K-means聚类法的识别算法能较好的区分嫩芽和背景,平均识别率达到94%左右,且能较好的保证分割后嫩芽的完整度,为智能采摘技术研究提供技术支持和理论基础。 展开更多
关键词 茶树图像 茶叶嫩芽识别 Lab颜色模型 k-means
在线阅读 下载PDF
一种基于改进SURF和K-Means聚类的布料图像匹配算法 被引量:2
17
作者 张雪芹 刘远远 +1 位作者 曹逸尘 张鹏飞 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期105-112,共8页
计算机图像智能处理技术为服装设计师开展设计、启发灵感提供了方便和可能。通过提取布料图像的SURF特征可以实现布料图像形状分析,但由于SURF特征维数高、特征提取是基于灰度图进行,因此存在匹配速度慢、匹配结果不够符合人眼视觉特点... 计算机图像智能处理技术为服装设计师开展设计、启发灵感提供了方便和可能。通过提取布料图像的SURF特征可以实现布料图像形状分析,但由于SURF特征维数高、特征提取是基于灰度图进行,因此存在匹配速度慢、匹配结果不够符合人眼视觉特点的问题。本文提出了基于小波变换的自适应SURF特征提取算法和基于K-Means聚类的布料图像颜色分析方法。通过融合图像形状特征、颜色特征,加快了布料图像匹配速度,使布料图像的匹配结果更加符合人眼视觉感受。在8种不同类型布料图像上的实验验证了该算法的有效性。 展开更多
关键词 布料图像匹配 SURF特征 小波变换 k-means
在线阅读 下载PDF
改进K-means聚类算法行驶工况及油耗研究 被引量:5
18
作者 苏小会 张玉西 +1 位作者 徐淑萍 尚煜 《计算机工程与科学》 CSCD 北大核心 2021年第11期2020-2026,共7页
为解决传统聚类算法初始中心易陷入局部最优、耗时长的问题,提出一种改进的K-means聚类优化算法。该算法引入最大最小距离和加权欧氏距离,从剩余聚类点距离均值和出发,避免孤立点和边缘数据的影响。利用比重法对主成分进行改进,以由此... 为解决传统聚类算法初始中心易陷入局部最优、耗时长的问题,提出一种改进的K-means聚类优化算法。该算法引入最大最小距离和加权欧氏距离,从剩余聚类点距离均值和出发,避免孤立点和边缘数据的影响。利用比重法对主成分进行改进,以由此获得的特征影响因子作为初始特征权重,构建一种加权欧氏距离度量。根据特征贡献率对聚类的影响,筛选具有代表性的特征因子凸显聚类效果,最终合成汽车行驶工况,分析瞬时油耗。结果表明,所提算法构建行驶工况的速度-加速度联合分布差异值仅为1.05%,比传统K-means聚类省时44.2%,行驶工况拟合度较高,能反映实际车辆的运行特征及油耗。 展开更多
关键词 行驶工况 影响因子 特征权重 加权k-means
在线阅读 下载PDF
室内定位中K-means聚类算法奇异值的优化处理 被引量:2
19
作者 陈云飞 杜太行 +2 位作者 江春冬 齐玲 孙曙光 《科学技术与工程》 北大核心 2018年第10期95-99,共5页
针对室内定位聚类算法中的奇异值出现较多的场景,按照以往聚类算法大多将其删除或替代为聚类平均值,这往往使得奇异值附近的定位误差陡增。研究采集阶段接入点(acess point,AP)端加入嵌入式滤波处理单元,采用格拉布斯(Grubbs)准则处理... 针对室内定位聚类算法中的奇异值出现较多的场景,按照以往聚类算法大多将其删除或替代为聚类平均值,这往往使得奇异值附近的定位误差陡增。研究采集阶段接入点(acess point,AP)端加入嵌入式滤波处理单元,采用格拉布斯(Grubbs)准则处理采集的信号以减少检测奇异值;然后在定位运算中改进了K-means聚类算法。首先根据模型函数鉴别运算中产生的奇异值,将奇异值线性化处理后由支持向量机(sport vector machine,SVM)对于奇异点进行分类;再将其进行K-means聚类划分。在不剔除奇异值的情况下,使得定位区域中的参考点合理利用,从而提高了整体累计误差的置信水平。研究中将剔除奇异值的K-means聚类算法作为比较对象,实验中采用美国Signal Hound公司的SA44B型频谱仪测量接收机组成传感器网络,可以使得K-means聚类算法的定位精度提高11.3%,证明在实际定位应用中是很有效的。 展开更多
关键词 室内定位 k-means 支持向量机 Grubbs准则 指纹信息 频谱仪
在线阅读 下载PDF
基于改进的分布式K-Means特征聚类的海量场景图像检索 被引量:6
20
作者 崔红艳 曹建芳 《计算机应用与软件》 CSCD 2016年第6期195-199,267,共6页
针对传统的图像检索方法在处理海量数据时面临的问题,提出一种基于改进的分布式K-Means特征聚类的海量场景图像检索方法。对分布式K-Means算法进行改进,优化了初始聚类中心的选择和迭代过程,并将其应用与场景图像的特征聚类中;充分利用H... 针对传统的图像检索方法在处理海量数据时面临的问题,提出一种基于改进的分布式K-Means特征聚类的海量场景图像检索方法。对分布式K-Means算法进行改进,优化了初始聚类中心的选择和迭代过程,并将其应用与场景图像的特征聚类中;充分利用Hadoop分布式平台的海量存储能力和强大并行计算能力,提出了海量场景图像的存储和检索方案,设计了场景图像特征提取、特征聚类以及图像检索三个阶段分布式并行处理的Map和Reduce任务。多组实验表明,提出的方法数据伸缩率曲线平缓,取得了优良的加速比,效率大于0.6,检索的平均准确率达到了88%左右,适合海量场景图像数据的检索。 展开更多
关键词 Hadoop分布式平台 MAPREDUCE 分布式k-means 特征 场景图像检索
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部