期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
基于Bi‑LSTM和时序注意力的异常心音检测 被引量:1
1
作者 卢官明 蔡亚宁 +3 位作者 卢峻禾 戚继荣 王洋 赵宇航 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期12-20,共9页
异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧... 异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧处理,使用平均幅度差函数(Average Magnitude Difference Function,AMDF)和短时过零率(Short⁃Time Zero⁃Crossing Rate,STZCR)提取每帧心音信号的初始特征;然后将它们拼接后作为Bi⁃LSTM的输入,并引入时序注意力机制,挖掘特征的长期依赖关系,提取心音信号的上下文时域特征;最后通过Softmax分类器,实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016提供的心音公共数据集上对所提出的算法使用10折交叉验证法进行了评估,其准确度、灵敏度、特异性、精度和F1评分分别为0.9579、0.9364、0.9642、0.8838和0.9093,优于已有的其他算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,在心血管疾病的临床辅助诊断中具有潜在的应用前景。 展开更多
关键词 心音分类 平均幅度差函数 短时过零率 双向长短时记忆网络 时序注意力机制
在线阅读 下载PDF
融合Seq2Seq与时序注意力机制的工艺质量预测
2
作者 阴艳超 施成娟 +1 位作者 邹朝普 刘孝保 《机械科学与技术》 北大核心 2025年第3期453-464,共12页
针对流程工业生产过程整体工序繁多,工序间耦合严重,多维工艺数据间时序关系及其复杂等问题,提出一种融合Seq2Seq与时序注意力机制的高维多尺度工艺过程质量预测方法。在分析多工序工艺数据特点,以及运用Seq2Seq模型进行编码解码过程面... 针对流程工业生产过程整体工序繁多,工序间耦合严重,多维工艺数据间时序关系及其复杂等问题,提出一种融合Seq2Seq与时序注意力机制的高维多尺度工艺过程质量预测方法。在分析多工序工艺数据特点,以及运用Seq2Seq模型进行编码解码过程面临的难题的基础上,引入时序注意力机制来构造长距离变化的时域信息矩阵。设计卷积神经网络和BiLSTM作为编码组件,学习工艺过程时序数据的工艺参数关联性和双向时序关系等潜在深度特征,并结合时序注意力机制抽取关键信息,实现对工艺质量相关的工艺参数时序数据的非线性相关特征和时序依赖性的自适应地学习。最后,通过对制丝生产工艺过程质量的单输出和多输出预测实验,验证了所提算法的实用性和有效性,为多工序耦合的流程制造过程质量的精准预测提供了方法和实现途径。 展开更多
关键词 多工序时序耦合 工艺质量预测 Seq2Seq 时序注意力机制 自适应学习
在线阅读 下载PDF
基于自监督预训练与时序注意力机制的变压器顶层油温预测 被引量:3
3
作者 李启明 李彬 +4 位作者 刘浩 甘津瑞 石富岭 卢卫疆 杨春萍 《中国电机工程学报》 EI CSCD 北大核心 2024年第S01期318-331,共14页
变压器故障预警依赖于更精确可信的变压器顶层油温预测。应用自监督预训练方法将预测模型训练过程中的油温预测任务转变为油温重建任务,泛化模型训练方式的同时提升模型对历史油温态势信息的抽取能力。该文提出双通道预训练时序注意力网... 变压器故障预警依赖于更精确可信的变压器顶层油温预测。应用自监督预训练方法将预测模型训练过程中的油温预测任务转变为油温重建任务,泛化模型训练方式的同时提升模型对历史油温态势信息的抽取能力。该文提出双通道预训练时序注意力网络(dual-channel pre-trained time-series attention network,DPAnet)模型,模型是采用时序注意力机制和趋势周期分支的深度神经网络,分别针对油温数据的趋势规律和周期规律实现单时间步级别的建模,从而加强在多时间步上的预测能力。算例分析表明,在以小时为颗粒度的1~72 h短期预测场景下,该文所提出的顶层油温预测模型平均预测损失为1.847,平均确定性系数为0.862,相比其他模型提升预测精度,且具有较强的泛化能力和鲁棒性,有效支撑变压器顶层油温变化趋势分析。 展开更多
关键词 顶层油温 自监督预训练 时序注意力 深度神经网络
在线阅读 下载PDF
基于时序注意力机制的电动汽车灵活性概率建模 被引量:1
4
作者 王昊天 刘栋 +3 位作者 秦继朔 史锐 但扬清 孙英云 《电力系统自动化》 EI CSCD 北大核心 2024年第7期94-102,共9页
电动汽车是一种可以向电力系统提供灵活性的柔性负荷。现有研究对电动汽车灵活性进行建模时,多数仅考虑了充电行为的不确定性以及分时电价的影响,忽略了日前电价与实时电价的偏差,缺少对实时电价、充电负荷多时间尺度时序特征的建模。... 电动汽车是一种可以向电力系统提供灵活性的柔性负荷。现有研究对电动汽车灵活性进行建模时,多数仅考虑了充电行为的不确定性以及分时电价的影响,忽略了日前电价与实时电价的偏差,缺少对实时电价、充电负荷多时间尺度时序特征的建模。针对此问题,文中总结了电动汽车灵活性的表现形式与影响因素,考虑面向电价的响应不确定性以及充电行为不确定性,提出基于时序注意力机制的电动汽车灵活性概率建模方法。通过时序注意力机制提取不同时序权重,设计基于时序卷积网络的多时间尺度特征提取网络学习充电行为、电价等不确定性,提取多时间尺度灵活性波动特征。算例表明,所提模型能够有效学习充电行为不确定性与面向电价的响应不确定性,其概率建模效果具有更高的可靠性与精度。 展开更多
关键词 电力系统 灵活性 电动汽车 概率建模 多时间尺度 时序注意力机制 时序卷积网络
在线阅读 下载PDF
基于混沌CSO优化时序注意力GRU模型的超短期风电功率预测 被引量:27
5
作者 孟安波 陈顺 +4 位作者 王陈恩 丁伟锋 蔡涌烽 符嘉晋 周华敏 《电网技术》 EI CSCD 北大核心 2021年第12期4692-4700,共9页
高精度的风电功率预测对风电的并网运营至关重要。为提取风电功率输入序列隐含的时间信息,建立以门控循环单元为基础的预测模型;并在模型输入侧引入时序注意力机制,通过与输入进行加权的方式提高模型对关键历史时间节点的敏感性。为加... 高精度的风电功率预测对风电的并网运营至关重要。为提取风电功率输入序列隐含的时间信息,建立以门控循环单元为基础的预测模型;并在模型输入侧引入时序注意力机制,通过与输入进行加权的方式提高模型对关键历史时间节点的敏感性。为加速模型收敛,在训练的早期利用动态混沌纵横交叉算法优化预测模型的权值和阈值;同时,通过构造多指标共同作用并联合待优化参数的正则项作为目标适应度函数,以避免优化过程中模型泛化性问题的出现。以某风电场采集间隔为1h和10min的实测数据进行实验,结果表明所提组合预测方法性能优于其他对比模型,并对其有效性进行了验证。 展开更多
关键词 风电功率预测 门控循环单元 时序注意力机制 动态混沌纵横交叉算法 正则化
在线阅读 下载PDF
小样本下时序注意力边界增强原型网络的齿轮箱故障诊断方法 被引量:5
6
作者 韩延 李超 +2 位作者 黄庆卿 文瑞 张焱 《电子测量与仪器学报》 CSCD 北大核心 2023年第2期90-98,共9页
针对小样本条件下原型网络在提取特征过程中会丢失振动数据的时序特征,且未修正样本在度量空间中的分布导致模型精度低的问题,提出一种时序注意力边界增强原型网络的齿轮箱故障诊断方法。首先,通过构建时间序列注意力模块,建立通道间的... 针对小样本条件下原型网络在提取特征过程中会丢失振动数据的时序特征,且未修正样本在度量空间中的分布导致模型精度低的问题,提出一种时序注意力边界增强原型网络的齿轮箱故障诊断方法。首先,通过构建时间序列注意力模块,建立通道间的时序特征依赖,获得通道时序融合特征;然后,在计算类原型之后,增加邻边界损失以修正度量空间中的故障特征类内和类间分布,明确类原型的表征边界。最后,通过计算测试样本与类原型的欧氏距离,输出故障诊断结果。实验表明,在小样本条件下本文所提方法相比其他方法具有更高的故障诊断精度。 展开更多
关键词 故障诊断 小样本 原型网络 度量学习 时序注意力
在线阅读 下载PDF
结合时序注意力机制的多特征融合行人序列图像属性识别方法 被引量:1
7
作者 黄晨 裴继红 赵阳 《信号处理》 CSCD 北大核心 2022年第1期64-73,共10页
目前绝大多数的行人属性识别任务都是基于单张图像的,单张图像所含信息有限,而图像序列中包含丰富的有用信息和时序特征,利用序列信息是提高行人属性识别性能的一个重要途径。本文提出了结合时序注意力机制的多特征融合行人序列图像属... 目前绝大多数的行人属性识别任务都是基于单张图像的,单张图像所含信息有限,而图像序列中包含丰富的有用信息和时序特征,利用序列信息是提高行人属性识别性能的一个重要途径。本文提出了结合时序注意力机制的多特征融合行人序列图像属性识别网络,该网络除了使用常见的空-时二次平均池化特征聚合和空-时平均最大池化特征聚合提取序列的特征外,还设计了空-时3D卷积注意力因子加权特征聚合分支进一步提取序列的特征。通过融合上述3个分支输出的序列的特征,使网络获得更加丰富的信息。此外在网络训练中本文在使用带权值的交叉熵损失基础上,添加了用于约束FP和FN数量的tversky损失作为网络的整体损失函数,使网络在训练过程中对查准率与查全率有更好的权衡。实验结果表明,结合时序注意力机制的多特征融合行人序列图像属性识别网络在各项评价指标中优于基于单张静止图像的方法,以及其他常见的几种特征聚合与时序建模方式。 展开更多
关键词 行人属性识别 时序注意力机制 特征融合 时序建模
在线阅读 下载PDF
基于时序注意力机制的超短期风电功率概率预测 被引量:1
8
作者 杨可文 孙英云 《现代电力》 北大核心 2023年第6期906-913,共8页
提高预测精度是风电概率预测研究的关键问题,融合多源数值天气预报数据降低预测误差,采用时序注意力机制对输入信息进行自适应选择,采用时序卷积网络提取多时间尺度的概率特征,并使用混合Beta分布构建预测概率信息。算例结果表明通过时... 提高预测精度是风电概率预测研究的关键问题,融合多源数值天气预报数据降低预测误差,采用时序注意力机制对输入信息进行自适应选择,采用时序卷积网络提取多时间尺度的概率特征,并使用混合Beta分布构建预测概率信息。算例结果表明通过时序注意力机制融合多源气象信息能有效提高模型训练的收敛性,其预测结果具有更高的精度。 展开更多
关键词 概率预测 多源数值天气预报 时序注意力机制 时序卷积网络
在线阅读 下载PDF
基于面部运动单元和时序注意力的视频表情识别方法 被引量:2
9
作者 胡敏 胡鹏远 +3 位作者 葛鹏 王晓华 章魁 任福继 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第1期108-117,共10页
针对视频序列中表情强度不一致,长短时记忆网络(LSTM)难以有效地提取其特征的问题,提出一种基于面部运动单元和时序注意力的视频表情识别方法.首先在卷积LSTM(ConvLSTM)的基础上引入时序注意力模块,对视频序列进行时序建模,在降低维度... 针对视频序列中表情强度不一致,长短时记忆网络(LSTM)难以有效地提取其特征的问题,提出一种基于面部运动单元和时序注意力的视频表情识别方法.首先在卷积LSTM(ConvLSTM)的基础上引入时序注意力模块,对视频序列进行时序建模,在降低维度的同时保留丰富人脸图像特征信息;其次提出基于面部动作单元的人脸图像分割规则,解决面部表情活跃区域难以界定的问题;最后在模型中嵌入标签修正模块,解决自然条件下数据集中样本不确定性的问题.在MMI,Oulu-CASIA和AFEW数据集上的实验结果表明,所提方法的模型参数量低于已公开的主流模型,且在MMI数据集上的平均识别准确率达到87.22%,高于目前主流方法,在整体效果上优于目前具有代表性的方法. 展开更多
关键词 面部运动单元 感兴趣区域分割 时序注意力 标签修正
在线阅读 下载PDF
基于序列成分重组与时序自注意力机制改进TCN-BiLSTM的短期电力负荷预测
10
作者 易雅雯 娄素华 《电力系统及其自动化学报》 北大核心 2025年第4期78-87,共10页
针对区域级电力负荷预测精度较低的问题,提出一种基于序列成分重组与时序自注意力机制改进时间卷积网络-双向长短期记忆网络(TCN-BiLSTM)的短期负荷预测方法。首先,通过中心频率法确定最佳初始分解数目,进而采用变分模态分解算法将原始... 针对区域级电力负荷预测精度较低的问题,提出一种基于序列成分重组与时序自注意力机制改进时间卷积网络-双向长短期记忆网络(TCN-BiLSTM)的短期负荷预测方法。首先,通过中心频率法确定最佳初始分解数目,进而采用变分模态分解算法将原始负荷序列分解为多个不同频率的成分序列;其次,基于各成分序列的样本熵对多个成分序列进行K均值聚类,以获得最佳聚类数量的重组负荷序列分量;接着,将各重组分量输入所提出的负荷预测模型,获得各重组分量预测结果;最终,线性叠加各重组成分序列预测结果以获得最终负荷预测结果。算例分析表明,该方法与其他相关对比模型相比,预测均方根误差降低46.37%、模型拟合效果平均提升3.24%,表明该方法负荷预测精度高、模型拟合效果好,适用于区域级电力负荷预测。 展开更多
关键词 负荷预测 变分模态分解 样本熵 K均值聚类 时序注意力机制 时间卷积网络 双向长短期记忆网络
在线阅读 下载PDF
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:3
11
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短期记忆网络 时序模式注意力机制 集群辨识 卷积神经网络
在线阅读 下载PDF
基于双重注意力机制和GRU网络的短期负荷预测模型 被引量:26
12
作者 李晓 卢先领 《计算机工程》 CAS CSCD 北大核心 2022年第2期291-296,305,共7页
电力负荷预测对电力系统的部署、规划和运行影响重大,但目前各输入特征对电网负荷情况影响的程度不稳定,且递归神经网络捕获负荷数据的长期记忆能力差,导致预测精度下降。提出一种基于双重注意力机制和GRU网络的预测新模型,利用特征注... 电力负荷预测对电力系统的部署、规划和运行影响重大,但目前各输入特征对电网负荷情况影响的程度不稳定,且递归神经网络捕获负荷数据的长期记忆能力差,导致预测精度下降。提出一种基于双重注意力机制和GRU网络的预测新模型,利用特征注意力机制自主分析历史信息与输入特征间的关联关系,提取重要特征,并通过时序注意力机制自主选取GRU网络中关键时间点的历史信息,提升较长时间段预测效果的稳定性。在3个公开数据集上的实验结果表明,该模型在预测精度指标上表现良好,对比SVR、KPCA-ELM、DBN、GRU、Attention-GRU、CNN-LSTM、AttentionCNN-GRU模型预测精度分别提高了2.47、1.14、1.93、1.37、1.04、0.74、0.41个百分点。 展开更多
关键词 时间序列预测 GRU网络 特征注意力机制 时序注意力机制 短期负荷预测
在线阅读 下载PDF
基于WPD和双重注意力机制TCN的短期电价预测 被引量:11
13
作者 黄圆 魏云冰 +1 位作者 童东兵 徐浩 《电工电能新技术》 CSCD 北大核心 2022年第6期80-88,共9页
针对电价的高频、非平稳性且受多种因素影响、时间卷积网络(TCN)在实际应用中忽略各输入特征的关联性以及在处理历史信息上表现较差的问题,本文提出了一种基于小波包分解和双重注意力机制TCN的短期电价预测方法。首先利用小波包分解对... 针对电价的高频、非平稳性且受多种因素影响、时间卷积网络(TCN)在实际应用中忽略各输入特征的关联性以及在处理历史信息上表现较差的问题,本文提出了一种基于小波包分解和双重注意力机制TCN的短期电价预测方法。首先利用小波包分解对电价序列进行分解重构,去除高频部分并进行重构;然后使用引入双重注意力机制的TCN模型进行电价预测。为挖掘电价与其影响因素的关联性,引入特征注意力机制实时计算各影响因素特征量的权重,突出关键输入特征;同时,为挖掘当前时刻电价与历史时刻信息的关联性,引入时序注意力机制提取历史关键时刻点信息,提高关键时刻点预测的精确度;最后以澳大利亚新南威尔士州电力市场实时数据为例进行预测分析,对比其他几种电价预测方法,验证了本文所提方法的有效性。 展开更多
关键词 短期电价预测 小波包分解 时间卷积网络 特征注意力机制 时序注意力机制
在线阅读 下载PDF
基于扩散模型的增量式时间序列缺失值填充算法
14
作者 冯兴杰 卞兴鹏 +1 位作者 冯小荣 王兴隆 《计算机应用》 北大核心 2025年第8期2582-2591,共10页
时间序列中的数据缺失是一个普遍存在的问题,这会给后续分析带来困难,对缺失值的有效填充是提升数据质量以及挖掘数据价值的重要着力点。然而,现有的填充算法在特征提取方面多沿用时序预测任务的面向非缺失数据的注意力模块,而对含有缺... 时间序列中的数据缺失是一个普遍存在的问题,这会给后续分析带来困难,对缺失值的有效填充是提升数据质量以及挖掘数据价值的重要着力点。然而,现有的填充算法在特征提取方面多沿用时序预测任务的面向非缺失数据的注意力模块,而对含有缺失值的时间序列的时空特征提取效果欠佳。此外,现有的填充算法缺乏对填充规律的深入研究,这让它们对于填充过程中的阶段性填充值利用不足,导致填充的准确率有待进一步提升。为了解决上述问题,提出一种基于扩散模型的增量式时间序列缺失值填充算法(I2TDM)。I2TDM在经典扩散模型中融入时序注意力模块,以增强对于含有缺失值的时间序列的特征提取能力。同时,设计一个新颖的增量式填充算法,使用增量选择模块保留部分阶段性填充值,从而提升填充算法的稳定性与准确率。在空气质量指数(AQI)、电力变压器油温(ETT)和天气(Weather)3个公开数据集上的填充实验结果表明,I2TDM相较于CSDI、SAITS和PriSTI等基线模型在平均绝对误差(MAE)指标上至少降低了2.92%,在均方根误差(RMSE)指标上至少降低了3.49%。可见,I2TDM能够有效提升时间序列缺失值填充的准确率。 展开更多
关键词 时间序列 缺失值填充 扩散模型 时序注意力 增量式填充
在线阅读 下载PDF
基于并行混合模型的滚动轴承剩余寿命预测
15
作者 唐友福 李澳 +2 位作者 刘瑞峰 姜佩辰 丁涵 《石油机械》 北大核心 2025年第1期10-19,共10页
准确地跟踪和预测滚动轴承剩余使用寿命,对于保障工业设备的安全性和可靠性具有重要的现实意义。针对现有模型在变工况下滚动轴承剩余寿命预测精度低、鲁棒性差的问题,提出一种基于并行混合模型的滚动轴承剩余寿命预测方法。引入添加SE... 准确地跟踪和预测滚动轴承剩余使用寿命,对于保障工业设备的安全性和可靠性具有重要的现实意义。针对现有模型在变工况下滚动轴承剩余寿命预测精度低、鲁棒性差的问题,提出一种基于并行混合模型的滚动轴承剩余寿命预测方法。引入添加SENet的多尺度卷积神经网络,提取滚动轴承退化阶段的深层特征;通过变分模态分解将所提特征分解为趋势项和随机项,分别输入到相关向量机和添加时序模式注意力机制的长短时记忆网络中进行预测,并选用瞪羚优化算法对预测模型的未知参数寻优;将所建模型应用于滚动轴承加速退化试验数据集。研究结果表明,相较于传统模型,该方法具有更高的预测精度和鲁棒性。研究结果可为滚动轴承的剩余寿命预测提供一种新的有效途径。 展开更多
关键词 滚动轴承 剩余寿命预测 瞪羚算法 时序模式注意力机制 长短时记忆网络 相关向量机
在线阅读 下载PDF
一种基于动态异构图的谣言检测模型 被引量:1
16
作者 朱文龙 陈羽中 饶孟宇 《小型微型计算机系统》 CSCD 北大核心 2024年第2期319-326,共8页
随着互联网技术和自媒体行业的快速发展,人们可以方便快捷地从社交媒体中获取最新信息,但也让更多的谣言在网络中盛行.现有谣言检测模型多从文本内容、用户信息和传播模式中挖掘有效特征.然而,现有模型未充分学习文本的语义信息和谣言... 随着互联网技术和自媒体行业的快速发展,人们可以方便快捷地从社交媒体中获取最新信息,但也让更多的谣言在网络中盛行.现有谣言检测模型多从文本内容、用户信息和传播模式中挖掘有效特征.然而,现有模型未充分学习文本的语义信息和谣言传播过程中的结构信息,并忽略了谣言传播的动态过程.针对上述问题,本文提出一种基于动态异构图的谣言检测模型DHGNN(Dynamic Heterogeneous Graph Neural Network).首先,为了增强帖子的文本语义表示,本文提出一种多级注意力网络,引导模型关注源帖子和相应评论中关键的词和句子,充分学习源帖与相应评论之间的语义关联.其次,引入了基于异构图的图神经网络,通过对异构传播图中的用户、帖子节点和转发(或评论)关系进行建模,为不同类型的节点和边生成特定的表示,充分学习异构传播图中的结构信息.最后,提出一种基于旋转记忆单元的时序注意力,分别为每个异构传播图快照建立记忆,捕获谣言动态传播的演化模式.在Twitter15、Twitter16数据集上的实验结果表明,DHGNN模型的性能优于最新的对比模型. 展开更多
关键词 谣言检测 多级注意力 异构传播图 图神经网络 时序注意力
在线阅读 下载PDF
融合TA-TCN和迁移学习的滚动轴承寿命预测 被引量:2
17
作者 车鲁阳 冷子文 +2 位作者 付惠琛 张佳佳 高军伟 《组合机床与自动化加工技术》 北大核心 2024年第3期147-151,共5页
针对在实际工业生产中,滚动轴承由于数据量少导致剩余寿命预测的准确度不高的问题,提出了一种时序注意力(temporal attention, TA)优化的时间卷积神经网络(time convolutional networks, TCN)与迁移学习相结合的剩余寿命预测方法。首先... 针对在实际工业生产中,滚动轴承由于数据量少导致剩余寿命预测的准确度不高的问题,提出了一种时序注意力(temporal attention, TA)优化的时间卷积神经网络(time convolutional networks, TCN)与迁移学习相结合的剩余寿命预测方法。首先,通过互补集合经验模态分解(complementary ensemble empirical mode decomposition, CEEMD)将原始特征向量分解为一组子序列分量,突出特征信号、降低噪声干扰;然后,将子序列分量输入搭建好的TCN模型并添加TA进行优化,深度挖掘深度特征与退化曲线关系;最后,引入迁移学习,利用源域数据进行训练和少量目标域数据进行参数微调,得到目标网络模型。经实例验证,所提模型的稳定性、预测精度相对于其它对比模型有所提升,且在异工况条件下依然有着良好的预测能力。 展开更多
关键词 滚动轴承 寿命预测 互补集合经验模态分解 时序注意力 时间卷积神经网络 迁移学习
在线阅读 下载PDF
面向数据隐私保护的分布式多风电场短期功率预测 被引量:2
18
作者 郑杰 牛哲文 +2 位作者 韩肖清 陈武晖 武宇翔 《太原理工大学学报》 北大核心 2024年第1期102-110,共9页
【目的】基于集中式数据的深度学习可以有效提高风功率的预测精度,但数据泄露带来的严重后果令各风电场不断重视自身数据的保密,对数据驱动的风功率预测方法造成阻碍。【方法】针对上述问题,提出一种面向数据隐私保护的分布式多风电场... 【目的】基于集中式数据的深度学习可以有效提高风功率的预测精度,但数据泄露带来的严重后果令各风电场不断重视自身数据的保密,对数据驱动的风功率预测方法造成阻碍。【方法】针对上述问题,提出一种面向数据隐私保护的分布式多风电场短期功率预测方法,利用横向联邦学习(federated learning,FL)框架完成对风电场的功率预测任务。首先,多个风电场采用分布训练方式,利用时序模式注意力(temporal pattern attention,TPA)机制和长短期记忆(long short-term memory,LSTM)网络组合成TPA-LSTM本地模型完成本地数据训练;再将这些本地模型的参数进行聚合处理,同时引入模型上传权重值,提高拟合效果好的本地模型的贡献率;最后实现全局模型参数的更新。【结果】实验结果证明,提出的方法在保证风电场数据隐私的前提下,获得的全局模型在多场景下具有良好的预测性能和泛化能力。 展开更多
关键词 数据隐私 横向联邦学习 长短期记忆网络 时序模式注意力 功率预测
在线阅读 下载PDF
基于CEEMDAN-DA-GRU的瓦斯涌出量预测模型 被引量:3
19
作者 徐耀松 白济宁 +2 位作者 王雨虹 阎馨 王丹丹 《传感技术学报》 CAS CSCD 北大核心 2023年第3期441-448,共8页
针对瓦斯涌出量数据具有非线性、周期性的特点和实际场景下不同特征因素与瓦斯涌出量关联程度不同导致预测精度低的问题,提出一种基于完备经验模态分解和双重注意力机制的瓦斯涌出量预测模型。通过CEEMDAN方法将瓦斯涌出量数据分解为频... 针对瓦斯涌出量数据具有非线性、周期性的特点和实际场景下不同特征因素与瓦斯涌出量关联程度不同导致预测精度低的问题,提出一种基于完备经验模态分解和双重注意力机制的瓦斯涌出量预测模型。通过CEEMDAN方法将瓦斯涌出量数据分解为频率不同的分量,以降低非线性数据的预测难度;再计算特征注意力机制中计算各特征因素的权重,挖掘当前分量与各个特征之间的关联关系;基于门控循环单元的时序注意力机制量化历史隐藏状态对当前状态的影响,提高长时间序列预测的准确度。通过相加重构得到最终预测结果。基于陕西某矿瓦斯涌出量数据进行预测实验,所提出模型的平均绝对百分比误差为1.65%,均小于DA-GRU、GRU和SVM等对比模型,验证了该模型的有效性。 展开更多
关键词 瓦斯涌出量预测 特征注意力机制 时序注意力机制 完备经验模态分解
在线阅读 下载PDF
基于BAM和CNN-GRU混合模型的辅助动力装置排气温度预测方法 被引量:2
20
作者 何永勃 曹祝兵 于洁 《推进技术》 EI CAS CSCD 北大核心 2022年第11期367-375,共9页
对飞机辅助动力装置(Auxiliary Power Unit,APU)排气温度(Exhaust Gas Temperature,EGT)的准确预测可为APU健康管理提供重要信息。传统方法在长周期预测中精度较低。提出一种基于特征与时序的双侧注意力机制(Bilateral Attention Mechan... 对飞机辅助动力装置(Auxiliary Power Unit,APU)排气温度(Exhaust Gas Temperature,EGT)的准确预测可为APU健康管理提供重要信息。传统方法在长周期预测中精度较低。提出一种基于特征与时序的双侧注意力机制(Bilateral Attention Mechanism,BAM)和卷积神经网络(Convolutional Neural Network,CNN)-门控循环单元(Gated Recurrent Unit,GRU)的混合模型,选取5个与排气温度关联度较高的特征参数对EGT进行多变量预测。引入BAM可自动量化输入变量与EGT的关联度,并加强历史关键信息对预测输出的表达;引入CNN可提取反映EGT非平稳动态变化的高维特征。实验结果表明:所提出的混合模型在单步与多步的长时间序列和多变量输入EGT预测均取得很好的效果。相比于BAM-GRU模型、CNN-GRU模型、GRU模型、长短期记忆(Long Short-Term Memory,LSTM)模型、支持向量机(Support Vector Machine,SVM)模型和反向传播(Back Propagation,BP)模型,混合模型的预测精度有较大程度提高。 展开更多
关键词 辅助动力装置 排气温度 门控循环单元 特征注意力机制 时序注意力机制 卷积神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部