期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于主动重心的青年高血压患者心肺运动时序数据增强
1
作者 黄昉菀 卢举鸿 於志勇 《计算机科学》 CSCD 北大核心 2023年第S01期569-579,共11页
精准医疗的逐步兴起,如挖掘青年高血压患者的心肺运动时序数据,可以了解不同个体对有氧运动训练的响应性,有助于提高患者高血压管理计划的制定效率,更有效地实现有氧运动干预的治疗。开展该研究的瓶颈之一在于难以获取充足的样本数据。... 精准医疗的逐步兴起,如挖掘青年高血压患者的心肺运动时序数据,可以了解不同个体对有氧运动训练的响应性,有助于提高患者高血压管理计划的制定效率,更有效地实现有氧运动干预的治疗。开展该研究的瓶颈之一在于难以获取充足的样本数据。为了解决获取数据难度大、成本高等问题,利用加权动态时间规整重心平均算法来进行时间序列数据增强,重点针对重心选择和权重分配进行了研究。针对重心选择问题,首次引入了主动重心的概念,提出了代表性重心与多样性重心选择策略,改善了数据增强的效果。此外,针对现有权重分配策略的不足,提出了随机权重距离递减分配策略,避免了合成重复样本,进一步提升了模型的泛化能力。实验结果表明,在该研究背景下同时考虑重心选择与权重分配进行数据增强,可以进一步提升青年高血压患者有氧运动干预疗效预测的准确性。 展开更多
关键词 高血压 心肺运动实验 时序数据增强 动态时间规整重心平均 重心选择策略 权重分配策略
在线阅读 下载PDF
基于TL-TimeGAN的多维时间序列数据增强及其应用分析
2
作者 智路平 汪万敏 《运筹与管理》 北大核心 2025年第5期177-184,I0060-I0064,共13页
针对部分场景下标签较少、样本不均衡的时序数据,为了更好的捕捉序列之间的逐步依赖关系,本文一方面使用具有因果关系属性的时域卷积网络构建生成对抗网络,另一方面使用长短期记忆网络构建嵌入网络和复现网络,以实现模型同时处理短期依... 针对部分场景下标签较少、样本不均衡的时序数据,为了更好的捕捉序列之间的逐步依赖关系,本文一方面使用具有因果关系属性的时域卷积网络构建生成对抗网络,另一方面使用长短期记忆网络构建嵌入网络和复现网络,以实现模型同时处理短期依存项和长期依存项,从而提出一种基于时域卷积网络和长短期记忆网络的时间序列生成对抗网络(A Time-series Generative Adversarial Network based on Temporal convolutional network and Long-short term memory network, TL-TimeGAN)。采用覆盖性、有用性和相似度检验的综合分析方法作为合成数据质量的评价指标,进一步全面地评价合成数据的覆盖性、预测程度和相似性。最终,基于以太坊欺诈检测数据集,使用Tabnet网络对扩增数据进行异常检测并获得局部特征重要性以及全局特征重要性,以增强扩增数据应用于实际工作的实践指导价值。 展开更多
关键词 时域卷积网络 长短期记忆网络 时间序列生成对抗网络 时序数据增强 多维时间序列
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部