针对不同陆地生态系统中净生态系统CO_(2)交换量(Net ecosystem exchange,NEE)数据的长期连续测量中存在的数据差异问题,以中国气象局青海高寒生态气象野外科学试验基地野牛沟试验站为研究对象,利用涡动协方差技术获取高寒湿地生态系统...针对不同陆地生态系统中净生态系统CO_(2)交换量(Net ecosystem exchange,NEE)数据的长期连续测量中存在的数据差异问题,以中国气象局青海高寒生态气象野外科学试验基地野牛沟试验站为研究对象,利用涡动协方差技术获取高寒湿地生态系统水平上的NEE数据。通过对比机器学习算法和通量数据后处理算法(Reddyproc)两种数据填充方法,提出了一种结合机器学习与时序异常检测(Time series anomaly detection,TAD)的新框架,用于NEE数据的空白填补。研究结果表明:1)Reddyproc算法在剔除异常值后,NEE插补决定系数(R^(2))达到0.67,数据离散度显著降低,数据质量提升;2)八种机器学习模型中,随机森林(Random Forest,RF)模型表现最优,其决定系数(Coefficient of determination,R^(2))为0.63,均方根误差(Root mean square error,RMSE)为2.17μmol s^(-1)m^(-2),且经过时序异常检测后,估算精度提升了17%;3)Reddyproc和RF估算的CO_(2)通量存在季节性差异,冷季(1—3月和10—12月)Reddyproc估算值低于RF,而暖季(4—9月)则高于RF,表明冬季Reddyproc低估了CO_(2)释放,夏季则低估了CO_(2)吸收。该新框架有效解决了数据采集不确定性和缺失导致的二氧化碳通量计算准确率问题,为研究高寒湿地生态系统的碳固持能力、对气候变化的响应以及极端事件的影响提供了关键数据支持。未来研究应进一步探索新方法的适用性、改进和优化方向,以实现更准确、可靠且适用于不同生态系统的填补模型,为生态系统建模和预测提供强大工具。展开更多
时间序列异常检测旨在检测时间序列中与正常数据不符的时间点或片段。如何充分利用时间序列中的上下文信息以提升检测精度,是目前构建异常检测模型的关键。然而,现有方法未充分考虑数据中上下文依赖关系的差异性,也缺乏对异常样本的建模...时间序列异常检测旨在检测时间序列中与正常数据不符的时间点或片段。如何充分利用时间序列中的上下文信息以提升检测精度,是目前构建异常检测模型的关键。然而,现有方法未充分考虑数据中上下文依赖关系的差异性,也缺乏对异常样本的建模,导致正常和异常样本区分度不明显,检测效果欠佳。因此,提出了一种考虑上下文依赖差异化的异常检测(Diffe-rentiated Context Dependency for Time Series Anomaly Detection,DCDAD)模型用于时序异常检测。DCDAD模型通过自注意力捕捉时间维度的上下文依赖,并在聚类过程中学习用于区分正、异常样本的超球面。采用异常注入思想对数据集进行扩充,解决异常样本稀缺的问题,并针对性地设计了差异化学习的目标函数,扩大正、异常样本的差异性,进而提升异常检测性能。在5个真实时序数据集上进行了大量实验,在F_(1)分数上相比于现有最先进的算法提升了约1.2%,证实了以差异化方式学习上下文依赖关系可提升模型的异常检测效果,同时参数敏感性分析和消融实验的结果也验证了DCDAD模型的稳定性以及有效性。展开更多
随着车联网(IoV)的日益普及和发展,其可靠性和安全性保障变得尤为重要。然而,在开放访问的环境中进行通信让智能交通系统的道路安全、通信安全和隐私问题面临巨大挑战。此外,对安全问题的快速响应要求使得实时检测成为越来越重要的研究...随着车联网(IoV)的日益普及和发展,其可靠性和安全性保障变得尤为重要。然而,在开放访问的环境中进行通信让智能交通系统的道路安全、通信安全和隐私问题面临巨大挑战。此外,对安全问题的快速响应要求使得实时检测成为越来越重要的研究课题。分布式拒绝服务(DDoS)攻击可能导致车辆失速或故障、干扰自动驾驶、造成交通拥堵和事故,是所有车联网安全挑战中对自动驾驶安全最为严重的威胁之一。针对车联网环境下的这种安全需求,设计并验证一个分布式拒绝服务攻击实时检测系统,使用信息熵理论来量化车辆流量信息分布,在逐元素滑动时间窗和偏差计算的基础上,提出一种时间复杂度为O(n)的采用“累计时间窗”的算法,结合高斯分布的概率分布模型来实时检测并告警DDoS攻击行为,并通过增加二次确认环节实现算法的改进。使用开源框架Framework For Misbehavior Detection进行的模拟实验结果表明,在VeReMi数据集中,该实时检测系统能够检测包括传统分布式拒绝服务攻击、破坏性女巫攻击和持续速率拒绝服务攻击等多种类型的DDoS攻击,检测准确率达100%,DDoS攻击检测时延达到8 s以内。研究结果能够为未来智能交通系统中分布式拒绝服务攻击的检测提供理论和实践参考。展开更多
文摘针对不同陆地生态系统中净生态系统CO_(2)交换量(Net ecosystem exchange,NEE)数据的长期连续测量中存在的数据差异问题,以中国气象局青海高寒生态气象野外科学试验基地野牛沟试验站为研究对象,利用涡动协方差技术获取高寒湿地生态系统水平上的NEE数据。通过对比机器学习算法和通量数据后处理算法(Reddyproc)两种数据填充方法,提出了一种结合机器学习与时序异常检测(Time series anomaly detection,TAD)的新框架,用于NEE数据的空白填补。研究结果表明:1)Reddyproc算法在剔除异常值后,NEE插补决定系数(R^(2))达到0.67,数据离散度显著降低,数据质量提升;2)八种机器学习模型中,随机森林(Random Forest,RF)模型表现最优,其决定系数(Coefficient of determination,R^(2))为0.63,均方根误差(Root mean square error,RMSE)为2.17μmol s^(-1)m^(-2),且经过时序异常检测后,估算精度提升了17%;3)Reddyproc和RF估算的CO_(2)通量存在季节性差异,冷季(1—3月和10—12月)Reddyproc估算值低于RF,而暖季(4—9月)则高于RF,表明冬季Reddyproc低估了CO_(2)释放,夏季则低估了CO_(2)吸收。该新框架有效解决了数据采集不确定性和缺失导致的二氧化碳通量计算准确率问题,为研究高寒湿地生态系统的碳固持能力、对气候变化的响应以及极端事件的影响提供了关键数据支持。未来研究应进一步探索新方法的适用性、改进和优化方向,以实现更准确、可靠且适用于不同生态系统的填补模型,为生态系统建模和预测提供强大工具。
文摘时间序列异常检测旨在检测时间序列中与正常数据不符的时间点或片段。如何充分利用时间序列中的上下文信息以提升检测精度,是目前构建异常检测模型的关键。然而,现有方法未充分考虑数据中上下文依赖关系的差异性,也缺乏对异常样本的建模,导致正常和异常样本区分度不明显,检测效果欠佳。因此,提出了一种考虑上下文依赖差异化的异常检测(Diffe-rentiated Context Dependency for Time Series Anomaly Detection,DCDAD)模型用于时序异常检测。DCDAD模型通过自注意力捕捉时间维度的上下文依赖,并在聚类过程中学习用于区分正、异常样本的超球面。采用异常注入思想对数据集进行扩充,解决异常样本稀缺的问题,并针对性地设计了差异化学习的目标函数,扩大正、异常样本的差异性,进而提升异常检测性能。在5个真实时序数据集上进行了大量实验,在F_(1)分数上相比于现有最先进的算法提升了约1.2%,证实了以差异化方式学习上下文依赖关系可提升模型的异常检测效果,同时参数敏感性分析和消融实验的结果也验证了DCDAD模型的稳定性以及有效性。
文摘随着车联网(IoV)的日益普及和发展,其可靠性和安全性保障变得尤为重要。然而,在开放访问的环境中进行通信让智能交通系统的道路安全、通信安全和隐私问题面临巨大挑战。此外,对安全问题的快速响应要求使得实时检测成为越来越重要的研究课题。分布式拒绝服务(DDoS)攻击可能导致车辆失速或故障、干扰自动驾驶、造成交通拥堵和事故,是所有车联网安全挑战中对自动驾驶安全最为严重的威胁之一。针对车联网环境下的这种安全需求,设计并验证一个分布式拒绝服务攻击实时检测系统,使用信息熵理论来量化车辆流量信息分布,在逐元素滑动时间窗和偏差计算的基础上,提出一种时间复杂度为O(n)的采用“累计时间窗”的算法,结合高斯分布的概率分布模型来实时检测并告警DDoS攻击行为,并通过增加二次确认环节实现算法的改进。使用开源框架Framework For Misbehavior Detection进行的模拟实验结果表明,在VeReMi数据集中,该实时检测系统能够检测包括传统分布式拒绝服务攻击、破坏性女巫攻击和持续速率拒绝服务攻击等多种类型的DDoS攻击,检测准确率达100%,DDoS攻击检测时延达到8 s以内。研究结果能够为未来智能交通系统中分布式拒绝服务攻击的检测提供理论和实践参考。