期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多注意力Bi-LSTM的恶意软件预测
被引量:
3
1
作者
李红娇
顾凡
《计算机工程与设计》
北大核心
2023年第12期3529-3535,共7页
在恶意软件预测任务中,针对训练数据不足及模型无法突出重要时序信息的问题,提出一种使用TS-GAN对数据进行扩增和使用多注意力Bi-LSTM模型进行预测的方案。多注意力Bi-LSTM由三层网络组成,利用Bi-LSTM层自动学习恶意软件并输出各时间步...
在恶意软件预测任务中,针对训练数据不足及模型无法突出重要时序信息的问题,提出一种使用TS-GAN对数据进行扩增和使用多注意力Bi-LSTM模型进行预测的方案。多注意力Bi-LSTM由三层网络组成,利用Bi-LSTM层自动学习恶意软件并输出各时间步的隐状态,通过多注意力层为各时间步隐状态分配权重突出重要时序信息,使用预测判别层实现恶意软件良性或恶意的预测。实验结果表明,该方法可以在恶意软件执行前4秒内以95.8%的预测准确率实现对恶意软件的预测,优于其它方法。
展开更多
关键词
恶意软件
预测
时序型生成对抗式网络
数据增强
反卷积
双向长短期记忆
网络
多注意力机制
在线阅读
下载PDF
职称材料
题名
基于多注意力Bi-LSTM的恶意软件预测
被引量:
3
1
作者
李红娇
顾凡
机构
上海电力大学计算机科学与技术学院
出处
《计算机工程与设计》
北大核心
2023年第12期3529-3535,共7页
基金
国家自然科学基金项目(61403247、61702321)。
文摘
在恶意软件预测任务中,针对训练数据不足及模型无法突出重要时序信息的问题,提出一种使用TS-GAN对数据进行扩增和使用多注意力Bi-LSTM模型进行预测的方案。多注意力Bi-LSTM由三层网络组成,利用Bi-LSTM层自动学习恶意软件并输出各时间步的隐状态,通过多注意力层为各时间步隐状态分配权重突出重要时序信息,使用预测判别层实现恶意软件良性或恶意的预测。实验结果表明,该方法可以在恶意软件执行前4秒内以95.8%的预测准确率实现对恶意软件的预测,优于其它方法。
关键词
恶意软件
预测
时序型生成对抗式网络
数据增强
反卷积
双向长短期记忆
网络
多注意力机制
Keywords
malware
prediction
TS-GAN
data augmentation
transposed convolution
Bi-LSTM
multi-Attention mechanism
分类号
TP309 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多注意力Bi-LSTM的恶意软件预测
李红娇
顾凡
《计算机工程与设计》
北大核心
2023
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部