期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
基于时序卷积网络的轻量级日志异常检测
1
作者 顾兆军 王亚飞 +1 位作者 刘春波 张智凯 《计算机工程与设计》 北大核心 2025年第8期2272-2279,共8页
针对物联网边缘设备计算能力和存储空间有限,现有方法难以直接部署应用。提出一种基于改进时序卷积网络(TCN)的轻量级日志异常检测模型LLAD。日志预处理后提取语义特征并表征单词与日志事件的关系;在异常检测阶段,采用深度可分离卷积操... 针对物联网边缘设备计算能力和存储空间有限,现有方法难以直接部署应用。提出一种基于改进时序卷积网络(TCN)的轻量级日志异常检测模型LLAD。日志预处理后提取语义特征并表征单词与日志事件的关系;在异常检测阶段,采用深度可分离卷积操作实现一维卷积运算,并使用全局平均池化替换全连接层以减少标准TCN的参数数量和计算量。在HDFS和BGL数据集上的实验结果表明,LLAD与基准模型相比,所需内存和FLOP至少减少80%,且检测性能指标F1值有所提升。 展开更多
关键词 边缘设备 日志异常检测 特征提取 语义特征 时序卷积网络 深度可分离卷积 全局平均池化
在线阅读 下载PDF
基于自编码器-受限时序卷积网络的数据驱动配电网无功优化策略 被引量:2
2
作者 苗洛源 彭勇刚 +1 位作者 胡丹尔 李子晨 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期4058-4068,共11页
配电网中可再生能源渗透率的提高带来了频繁的电压越限问题。作为一种被广泛研究的方法,无功优化方法已经成功应用到配电网中以降低网损、优化电压质量。该文提出一种基于自编码器-受限时序卷积网络的新型数据驱动配电网无功优化策略,... 配电网中可再生能源渗透率的提高带来了频繁的电压越限问题。作为一种被广泛研究的方法,无功优化方法已经成功应用到配电网中以降低网损、优化电压质量。该文提出一种基于自编码器-受限时序卷积网络的新型数据驱动配电网无功优化策略,该策略通过3个阶段来协调光伏逆变器、电容器组等多种多时间尺度的无功调节设备。首先,将无功优化问题建模为混合整数二阶锥规划问题,求解出历史最优无功调度策略;然后,使用历史运行数据和最优策略训练所提网络模型,并通过矫正层规避不合理结果;在实际运行中,训练好的模型依据系统测量值给出无功优化策略以应对配电网的波动。最后,通过改进IEEE 33节点算例仿真实验验证,所提方法能够达到混合整数二阶锥模型98.80%的准确度而仅消耗其7.14%的时间;与其他流行的深度学习方法相比,具有更佳的性能和更好的实用性。 展开更多
关键词 无功优化 受限时序卷积网络 数据驱动 二阶锥规划 自编码器
在线阅读 下载PDF
采用格拉姆角场-卷积神经网络-时序卷积网络混合模型的锂离子电池健康状态估计
3
作者 赵扬 耿莉敏 +5 位作者 胡循泉 胡兵 巫春玲 张文博 山世玉 陈昊 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第11期27-38,共12页
针对现有电池健康状态(SOH)估计存在估计精度低、时序特征捕捉不足的问题,提出了一种格拉姆角场-卷积神经网络-时序卷积网络(GAF-CNN-TCN)混合模型。利用GAF算法将不同长度的容量增量(IC)曲线转换成图像数据,并采用卷积神经网络从中提... 针对现有电池健康状态(SOH)估计存在估计精度低、时序特征捕捉不足的问题,提出了一种格拉姆角场-卷积神经网络-时序卷积网络(GAF-CNN-TCN)混合模型。利用GAF算法将不同长度的容量增量(IC)曲线转换成图像数据,并采用卷积神经网络从中提取特征;提出一种特征融合网络,将二维卷积神经网络从图像中提取的图片特征与一维卷积神经网络从IC序列中提取的时序特征进行融合;将提取的综合特征输入时序卷积网络模型中进行训练,实现了SOH的准确估计。利用美国国家航空航天局和牛津大学的锂离子电池数据集进行模型验证,结果表明:相较于长短期记忆(LSTM)模型,GAF-CNN-TCN混合模型输出的SOH与真实SOH之间的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别降低了85.65%、86.12%、84.0%;相较于CNN-LSTM模型,所提模型的MAE、MAPE和RMSE分别降低了83.24%、83.75%、82.27%;相较于TCN模型,所提模型的MAE、MAPE和RMSE分别降低了76.92%、77.19%、76.01%。 展开更多
关键词 锂离子电池 电池健康状态 格拉姆角场 卷积神经网络 时序卷积网络
在线阅读 下载PDF
基于时序卷积网络的云服务器性能预测模型 被引量:4
4
作者 廖恩红 舒娜 +1 位作者 李加伟 庞雄文 《华南师范大学学报(自然科学版)》 CAS 北大核心 2020年第4期107-113,共7页
目前基于深度学习的主机性能预测模型大部分缺乏普适性,实验数据缺乏公正性,无法准确预测能耗或性能峰值点且时间开销较大.为解决这些问题,文章提出了一种基于改进时序卷积网络的云服务器性能预测模型(ATCN模型).该模型将CPU利用率作为... 目前基于深度学习的主机性能预测模型大部分缺乏普适性,实验数据缺乏公正性,无法准确预测能耗或性能峰值点且时间开销较大.为解决这些问题,文章提出了一种基于改进时序卷积网络的云服务器性能预测模型(ATCN模型).该模型将CPU利用率作为主机过载的衡量标准,利用多维性能指标构建N+1维能耗向量,建立输入向量与预测标准之间的关系;调整TCN中的卷积核大小并不断增大扩张因子,实现长期记忆效果.基于阿里云开源数据集的实验结果表明:ATCN模型具有强自适应性,在不同硬件配置和资源使用情况下,预测准确率和效率方面比LSTM模型提升大约20%. 展开更多
关键词 云数据中心 深度学习 时序卷积网络 性能预测
在线阅读 下载PDF
基于时序卷积网络的简答题评阅方法
5
作者 姜丽芬 欧阳雪城 +2 位作者 李昊耘 王可可 梁妍 《天津师范大学学报(自然科学版)》 CAS 北大核心 2023年第4期64-68,共5页
提出一种基于时序卷积网络(temporal convolutional network,TCN)并结合预训练语言模型BERT的简答题评阅模型(SA-TCN).该模型使用BERT对评分答案和参考答案进行编码,在建立二者之间内在联系的同时提取深层次文本语义特征.为减少信息丢... 提出一种基于时序卷积网络(temporal convolutional network,TCN)并结合预训练语言模型BERT的简答题评阅模型(SA-TCN).该模型使用BERT对评分答案和参考答案进行编码,在建立二者之间内在联系的同时提取深层次文本语义特征.为减少信息丢失并获取深层全局特征,基于TCN捕获多尺度语义信息.在公开数据集ASAP的set5上进行实验,结果表明,该模型的精度和二次加权Kappa分别达到86.87%和87.46%,优于Bi-LSTM、TextCNN和RNN等其他模型. 展开更多
关键词 简答题 时序卷积网络 BERT 深度学习
在线阅读 下载PDF
基于遗传算法选优的集成手段与时序卷积网络的涡扇发动机剩余寿命预测 被引量:10
6
作者 朱霖 宁芊 +1 位作者 雷印杰 陈炳才 《计算机应用》 CSCD 北大核心 2020年第12期3534-3540,共7页
涡扇发动机作为航空航天领域的核心设备之一,其健康状况决定了航空器能否稳定可靠地运行。而对涡扇发动机的剩余寿命(RUL)进行判断,是设备监测与维护的重要一环。针对涡扇发动机监测过程中存在的工况复杂、监测数据多样、时间跨度长等特... 涡扇发动机作为航空航天领域的核心设备之一,其健康状况决定了航空器能否稳定可靠地运行。而对涡扇发动机的剩余寿命(RUL)进行判断,是设备监测与维护的重要一环。针对涡扇发动机监测过程中存在的工况复杂、监测数据多样、时间跨度长等特点,提出了一种遗传算法优选时序卷积网络(TCN)基模型的集成方法(GASENTCN)的涡扇发动机剩余寿命预测模型。首先,利用TCN捕获长跨度下的数据内在关系,从而对RUL作出预测;然后,应用GASEN集成多个独立的TCN,以增强模型的泛化性能;最后,在通用的商用模块化航空推进系统模拟模型(CMAPSS)数据集上,对所提模型与当下流行的机器学习方法和其他的深度神经网络进行了比较。实验结果表明,在多种不同的运行模式和故障条件下,与流行的双向长短期记忆(Bi-LSTM)网络相比,所提模型都有着更高的预测准确率与更低的预测误差。以FD001数据集为例,在该数据集上所提模型的均方根误差(RMSE)相较Bi-LSTM低17.08%,相对准确率(Accuracy)相较Bi-LSTM高12.16%。所提模型在设备的智能检修与维护方面有着较好的应用前景。 展开更多
关键词 数据驱动模型 剩余寿命预测 时序卷积网络 集成方法 涡扇发动机
在线阅读 下载PDF
基于时间序列和时序卷积网络的脉象信号识别研究 被引量:7
7
作者 朱光耀 颜建军 +2 位作者 郭睿 王忆勤 燕海霞 《世界科学技术-中医药现代化》 CSCD 北大核心 2021年第9期3056-3064,共9页
目的研究脉象信号识别模型的建立,充分利用脉象信号在时域中的形态信息,为脉诊客观化研究提供了一种新的思路和方法。方法通过对脉象信号进行预处理和序列规正化,获得长度一致的脉象信号时间序列,利用基于时序卷积的深度学习网络实现对... 目的研究脉象信号识别模型的建立,充分利用脉象信号在时域中的形态信息,为脉诊客观化研究提供了一种新的思路和方法。方法通过对脉象信号进行预处理和序列规正化,获得长度一致的脉象信号时间序列,利用基于时序卷积的深度学习网络实现对序列形态的特征提取,并建立脉象信号识别模型。结果通过网络自学习提取的特征多数具有显著性差异,7种脉象的平均识别准确率达到85.76%,与常用的脉象识别方法相比有明显提升。结论基于时间序列和时序卷积网络的脉象信号识别方法能够较好地区分不同脉象信号的形态信息,在多种类脉象的识别任务中具有一定的实用价值。 展开更多
关键词 脉象识别 形态信息 特征提取 时间序列 时序卷积网络
在线阅读 下载PDF
云工作流中基于多任务时序卷积网络的异常检测方法 被引量:6
8
作者 姚杰 程春玲 +1 位作者 韩静 刘峥 《计算机应用》 CSCD 北大核心 2021年第6期1701-1708,共8页
云计算数据中心在日常部署和运行过程中产生的大量日志可以帮助系统运维人员进行异常分析。路径异常和时延异常是云工作流中常见的异常。针对传统的异常检测方法分别对两种异常检测任务训练相应的学习模型,而忽略了两种异常检测任务之... 云计算数据中心在日常部署和运行过程中产生的大量日志可以帮助系统运维人员进行异常分析。路径异常和时延异常是云工作流中常见的异常。针对传统的异常检测方法分别对两种异常检测任务训练相应的学习模型,而忽略了两种异常检测任务之间的关联性,导致异常检测准确率下降的问题,提出了一种基于多任务时序卷积网络的日志异常检测方法。首先,基于日志流的事件模板,生成事件序列和时间序列;然后,训练基于多任务时序卷积网络的深度学习模型,该模型通过共享时序卷积网络中的浅层部分来从系统正常执行的流程中并行地学习事件和时间特征;最后,对云计算工作流中的异常进行分析,并设计了相关异常检测逻辑。在Open Stack数据集上的实验结果表明,与日志异常检测的领先算法Deep Log和基于主成分分析(PCA)的方法比较,所提方法的异常检测准确率至少提升了7.7个百分点。 展开更多
关键词 异常检测 日志分析 时序卷积网络 多任务学习 云工作流
在线阅读 下载PDF
实际噪声下基于时序卷积网络的手机来源识别 被引量:1
9
作者 吴张倩 苏兆品 +1 位作者 武钦芳 张国富 《计算机工程与科学》 CSCD 北大核心 2021年第8期1461-1469,共9页
针对实际环境噪声下的手机来源识别问题,提出一种基于线性判别分析和时序卷积网络的手机来源识别方法。首先,通过分析不同手机语音特征在实际环境噪声下的分类性能,基于带能量描述符、常数Q变换域和线性判别分析得到一种新的手机语音混... 针对实际环境噪声下的手机来源识别问题,提出一种基于线性判别分析和时序卷积网络的手机来源识别方法。首先,通过分析不同手机语音特征在实际环境噪声下的分类性能,基于带能量描述符、常数Q变换域和线性判别分析得到一种新的手机语音混合特征。然后,以此混合特征为输入,基于时序卷积网络进行训练和分类。最后,在10个品牌、47种手机型号、32900条语音样本的实际环境噪声语音库上的测试结果显示,所提方法的平均识别准确率达到99.82%。此外,与经典的基于带能量描述符和支持向量机的方法,以及基于常数Q变换域和卷积神经网络的方法相比,平均识别准确率分别提高了0.44和0.54个百分点,平均召回率分别提高了0.45和0.55个百分点,平均精确率分别提高了0.41和0.57个百分点,平均F1分数分别提高了0.49和0.55个百分点。实验结果表明,所提方法具有更优的综合识别性能。 展开更多
关键词 手机来源识别 实际环境噪声 混合特征 线性判别分析 时序卷积网络
在线阅读 下载PDF
考虑风电时序特性的深度小波-时序卷积网络超短期风功率预测 被引量:24
10
作者 陈海鹏 李赫 +3 位作者 阚天洋 赵畅 张忠 于海薇 《电网技术》 EI CSCD 北大核心 2023年第4期1653-1662,共10页
超短期风电功率预测对于电力系统生产调度计划的制定具有重要意义,风电出力具有较强的随机性、波动性、不可控性。风电不确定性对风电时序关系的影响,给风电功率预测精度提出了挑战。针对上述问题,提出了基于离散小波变换(discrete wave... 超短期风电功率预测对于电力系统生产调度计划的制定具有重要意义,风电出力具有较强的随机性、波动性、不可控性。风电不确定性对风电时序关系的影响,给风电功率预测精度提出了挑战。针对上述问题,提出了基于离散小波变换(discrete wavelet transformation,DWT)、双深度Q网络(doubledepth Qnetwork,DDQN)、时序卷积网络(temporal convolutionalnetwork,TCN)和注意力机制(Attention)的DWT-DDQN-TCN-Attention(DWT-DTCNA)超短期风功率预测方法。首先,利用DWT将风电数据序列分解为不同频率的风电数据集,对不同频率的风电数据集做自相关函数分析,提取高自相关性的风功率训练子集作为预测模型的输入。其次,根据DWT分解后得到的不同频率风功率数据集分别训练相应的TCNA的风电超短期预测模型,深度挖掘风电功率时序关系,获得精度更高、更稳定的预测结果。为减少深度学习模型的参数对预测精度的影响,采用DDQN算法优化预测模型的参数。最后,利用DWT将不同频率超短期风功率预测结果进行重构,获得了预测日的风电功率序列。以西北部某风电场实测数据为例进行仿真分析,结果表明所提方法能够充分提取风电功率序列的时序特征,优化模型内部参数,有效提高了超短期风电功率预测精度。 展开更多
关键词 离散小波变换 时序卷积网络 深度强化学习 超短期预测 注意力机制
在线阅读 下载PDF
软阈值时序卷积网络在冷水机组传感器故障诊断中的应用 被引量:9
11
作者 洪琳 李冬辉 +1 位作者 高龙 赵墨刊 《西安交通大学学报》 EI CAS CSCD 北大核心 2023年第2期67-77,共11页
为了提高冷水机组传感器的故障诊断性能,提出了一种基于软阈值时序卷积网络的编码-解码器重构模型(ST-TCN),并建立基于该模型的传感器故障诊断方法。采用时序卷积网络(TCN)充分挖掘冷水机组传感器的时间相关性、热力学物理量间的数据相... 为了提高冷水机组传感器的故障诊断性能,提出了一种基于软阈值时序卷积网络的编码-解码器重构模型(ST-TCN),并建立基于该模型的传感器故障诊断方法。采用时序卷积网络(TCN)充分挖掘冷水机组传感器的时间相关性、热力学物理量间的数据相关性以及动态响应差异性特征。在TCN的残差块中引入软阈值自适应模块剔除冗余信息,降低噪声干扰。依托ST-TCN模型“端到端”的网络结构优势,将绝对重构残差向量与故障阈值向量进行比较,直接定位故障传感器。在实际压缩式冷水机组平台上采集传感器数据进行实验,结果表明,软阈值自适应模块能有效地增强网络模型的重构能力,从而提高故障传感器的诊断性能。以压缩机吸气温度传感器T1为例,ST-TCN的平均偏差故障识别率比改进前提升了45.9%;与其他故障诊断方法相比,所提的最新框架获得了较高的偏差故障识别率。 展开更多
关键词 时序卷积网络 编码-解码器 软阈值化 冷水机组 传感器故障诊断
在线阅读 下载PDF
基于时序卷积网络的情感识别算法 被引量:5
12
作者 宋振振 陈兰岚 娄晓光 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第4期564-572,共9页
采用脑电数据集DEAP进行情感识别。由于脑电信号具有时序性,采用深度学习中的时序卷积网络(TCN)对数据进行训练识别。首先使用小波包分解提取各子带小波系数能量值作为特征;然后通过TCN对特征进行训练,在训练过程中加入了Snapshot寻优... 采用脑电数据集DEAP进行情感识别。由于脑电信号具有时序性,采用深度学习中的时序卷积网络(TCN)对数据进行训练识别。首先使用小波包分解提取各子带小波系数能量值作为特征;然后通过TCN对特征进行训练,在训练过程中加入了Snapshot寻优思想保存多个模型;最后采用投票集成策略建立集成模型,以提高识别精度,并增强结果稳健性。实验结果表明,本文方法将情感分为二类和四类的平均识别精度分别能够达到95%和93%,相对于同类研究有较大的提高。 展开更多
关键词 脑电信号 情感识别 时序卷积网络 小波包分解 Snapshot寻优
在线阅读 下载PDF
基于时序卷积网络的词级语言模型研究与应用 被引量:3
13
作者 李大舟 于广宝 +1 位作者 高巍 孟智慧 《计算机工程与设计》 北大核心 2021年第2期449-454,共6页
提出一种卷积神经网络——时序卷积神经网络。将该网络应用于语言模型,时序卷积神经网络的基本结构由输入层、扩大卷积层、因果卷积层、Relu层、Dropout层、输出层组成,将扩大卷积应用在语言模型中。实验结果表明,将语言模型的复杂度降... 提出一种卷积神经网络——时序卷积神经网络。将该网络应用于语言模型,时序卷积神经网络的基本结构由输入层、扩大卷积层、因果卷积层、Relu层、Dropout层、输出层组成,将扩大卷积应用在语言模型中。实验结果表明,将语言模型的复杂度降到83.21,误差降到3.87,该网络同RNN比较复杂度下降14%、误差下降0.69,该网络同LSTM比较复杂度下降13%、误差下降0.4,综合复杂度、误差两个指标,时序卷积网络优于其它基准模型。 展开更多
关键词 语言模型 扩大卷积 时序卷积神经网络 因果卷积 复杂度
在线阅读 下载PDF
时序卷积网络在转子热固耦合应力预测及寿命评估中的应用
14
作者 李伟业 冯建欣 +3 位作者 文思果 张小龙 袁奇 李浦 《西安交通大学学报》 2025年第10期87-95,共9页
针对透平机械转子启动过程中,瞬态热应力由于计算成本高而难以实现快速预测的问题,提出了一种基于时序卷积网络(TCN)的压缩机转子表面温度场和应力场预测方法。采用有限元方法计算压缩机转子在冷态启动工况下的温度场、应力场和使用寿命... 针对透平机械转子启动过程中,瞬态热应力由于计算成本高而难以实现快速预测的问题,提出了一种基于时序卷积网络(TCN)的压缩机转子表面温度场和应力场预测方法。采用有限元方法计算压缩机转子在冷态启动工况下的温度场、应力场和使用寿命,基于TCN模型开展转子的温度场和应力场预测及寿命评估,并与长短时记忆(LSTM)网络、门控循环单元(GRU)和Transformer 3种神经网络模型的预测结果进行对比。模拟结果表明:冷态启动工况下,TCN模型在预测转子瞬态热应力时的性能表现最优,相较于Transformer、LSTM和GRU模型,其热应力预测决定系数分别提高了0.03%、0.60%、0.36%,综合加载等效应力预测决定系数分别提高了0.10%、0.48%、0.02%;与传统的有限元热固耦合分析方法相比,TCN模型的计算效率显著提高,耗时仅为有限元方法的0.25%。所提方法提升了预测的准确性,可为透平机械转子瞬态热应力的快速预测和寿命评估提供技术支撑。 展开更多
关键词 时序卷积网络 压缩机转子 热应力 寿命评估
在线阅读 下载PDF
基于时序卷积残差网络和鹈鹕优化算法的新能源电网安全稳定控制方法 被引量:3
15
作者 张建新 邱建 +4 位作者 朱煜昆 朱益华 杨欢欢 徐光虎 涂亮 《可再生能源》 CAS CSCD 北大核心 2024年第6期845-852,共8页
随着“双碳”目标的推进,随机波动的新能源接入电网的规模和容量日益提升,严重影响电网的安全稳定运行。针对大干扰故障电压稳定控制问题,文章提出了一种基于时序卷积残差网络和鹈鹕优化算法的新能源电网电压安全稳定控制策略。首先,利... 随着“双碳”目标的推进,随机波动的新能源接入电网的规模和容量日益提升,严重影响电网的安全稳定运行。针对大干扰故障电压稳定控制问题,文章提出了一种基于时序卷积残差网络和鹈鹕优化算法的新能源电网电压安全稳定控制策略。首先,利用时序卷积信息损失少、感受野宽以及残差网络深层特征提取能力强的优势,构建基于时序卷积残差网络的电压稳定预测模型,映射出敏感节点电压时序特征和电压稳定之间的关系;其次,构建电压稳定控制模型,利用鹈鹕优化算法收敛速度快、搜索能力强的优势求解控制模型,得出最佳切机和切负荷动作措施;最后,进行了仿真验证。验证结果表明,所提方法提高了新能源电网电压安全稳定预测的准确性,通过最佳的电压稳定控制策略提高了电网故障后的安全稳定运行水平。 展开更多
关键词 新能源 大干扰故障 时序卷积残差网络 鹈鹕优化算法 安全稳定控制
在线阅读 下载PDF
基于时序卷积神经网络的场地地震效应模拟
16
作者 胡晓虎 陈苏 +3 位作者 金立国 傅磊 王苏阳 刘献伟 《地震学报》 CSCD 北大核心 2024年第5期893-905,共13页
场地地震效应模拟作为岩土地震工程学的热点与难点,多基于数学物理方法或观测记录开展研究,需面对动力方程求解、建模不确定性、数据稀疏、泛化能力等问题。针对以上问题,本文构建了物理嵌入的时序卷积神经网络(Phy-TCN)模型,并验证了... 场地地震效应模拟作为岩土地震工程学的热点与难点,多基于数学物理方法或观测记录开展研究,需面对动力方程求解、建模不确定性、数据稀疏、泛化能力等问题。针对以上问题,本文构建了物理嵌入的时序卷积神经网络(Phy-TCN)模型,并验证了其与纯数据驱动的时序卷积网络(TCN)的性能差异。针对KiK-net数据库中场地井上/井下强震记录,采用Phy-TCN模型开展了场地地震效应模拟。结果表明:Phy-TCN模型可有效模拟时序型数据;在KiK-net观测记录等含噪信号模拟中,以选取站点的地震事件特定周期点反应谱值为基准,Phy-TCN模型和等效线性化方法所得数据与实测记录的平均相对误差分别为0.067和0.379。基于上述结果认为,Phy-TCN模型可应用于土层剖面信息模糊条件的场地地震效应模拟。 展开更多
关键词 时序卷积网络 场地地震效应 数据驱动 物理嵌入 深度学习
在线阅读 下载PDF
基于改进时序网络的钻进参数可解释实时预测 被引量:1
17
作者 张瑞 祝兆鹏 +4 位作者 李大钰 宋先知 李根生 张诚恺 朱硕 《石油机械》 北大核心 2024年第4期1-10,共10页
实时准确预测钻进参数变化趋势对现场钻井作业具有重要参考价值。针对智能模型在现场作业应用中面临的钻进参数可获取性限制,提出了一种基于注意力时域卷积网络(AT-TCN)的钻进参数超前预测方法。该方法不仅考虑了录井曲线随深度变化的... 实时准确预测钻进参数变化趋势对现场钻井作业具有重要参考价值。针对智能模型在现场作业应用中面临的钻进参数可获取性限制,提出了一种基于注意力时域卷积网络(AT-TCN)的钻进参数超前预测方法。该方法不仅考虑了录井曲线随深度变化的趋势和自相关性,同时嵌入高拓展性的注意力机制模块,使模型更好地捕捉钻进参数的动态变化。利用现场钻井数据集测试,评估了模型在预测4种关键钻进参数(扭矩、立管压力、钻井液当量密度和机械钻速)方面的有效性和准确性。研究结果表明:AT-TCN预测当量密度的准确率最高达到99%,且在模型精度和计算效率上,均优于其他4种深度学习模型,能够有效捕捉钻进参数的变化趋势。AT-TCN还提供模型的双重可解释性,可从时序和特征维度方面反映输入序列对预测结果的影响。研究结果有望为钻井作业的安全性、高效性作出重要贡献,具有较强的落地应用价值。 展开更多
关键词 钻进参数 智能模型 超前预测 注意力机制 时序卷积网络 可解释性
在线阅读 下载PDF
基于多尺度时序感知网络的课堂语音情感识别方法
18
作者 周菊香 刘金生 +2 位作者 甘健侯 吴迪 李子杰 《计算机应用》 CSCD 北大核心 2024年第5期1636-1643,共8页
语音情感识别近年来在多场景智能系统中得到了广泛应用,也为实现智慧课堂环境下的教学行为智能分析提供了可能。通过课堂语音情感识别技术可以自动识别课堂教学中教师和学生的情感状态,帮助教师了解自己的授课风格并及时掌握学生的课堂... 语音情感识别近年来在多场景智能系统中得到了广泛应用,也为实现智慧课堂环境下的教学行为智能分析提供了可能。通过课堂语音情感识别技术可以自动识别课堂教学中教师和学生的情感状态,帮助教师了解自己的授课风格并及时掌握学生的课堂学习状态,从而达到精准施教的目的。针对课堂语音情感识别任务,首先,收集中小学的课堂实录教学视频,提取音频并进行人工切分和标注,构建了包含6类情感的中小学教学语音情感语料库;其次,基于时序卷积网络(TCN)和交叉门控机制(cross-gated mechanism)设计了双路时序卷积通道,以提取多尺度交叉融合特征;最后,采用动态权重融合策略调整不同尺度特征的贡献度,减少非重要特征对识别结果的干扰,进一步增强模型的表征和学习能力。实验结果表明,所提方法在多个公共数据集上优于TIM-Net(Temporal-aware bI-direction Multi-scaleNetwork)、GM-TCNet(Gated Multi-scale Temporal Convolutional Network)和CTL-MTNet(CapsNet and Transfer Learning-based Mixed Task Net)等先进模型,在真实课堂语音情感识别任务上未加权平均召回率(UAR)和加权平均召回率(WAR)分别达90.58%和90.45%。 展开更多
关键词 语音情感识别 课堂语音 时序卷积网络 交叉门控卷积 梅尔频率倒谱系数
在线阅读 下载PDF
基于聚合混合模态分解和时序卷积神经网络的综合能源系统负荷修正预测 被引量:28
19
作者 李文武 张鹏宇 +2 位作者 石强 冯晨洋 李丹 《电网技术》 EI CSCD 北大核心 2022年第9期3345-3353,共9页
为增强综合能源系统负荷精细化分解水平,充分利用误差信息以进一步提升预测性能,提出一种基于聚合混合模态分解和时序卷积神经网络(temporal convolutional network,TCN)的综合能源系统负荷修正预测框架。首先,采用改进完全集合经验模... 为增强综合能源系统负荷精细化分解水平,充分利用误差信息以进一步提升预测性能,提出一种基于聚合混合模态分解和时序卷积神经网络(temporal convolutional network,TCN)的综合能源系统负荷修正预测框架。首先,采用改进完全集合经验模态分解对电、冷和热负荷初步分解处理,随后利用变分模态分解对具有强复杂性的子序列进一步分解。然后,依据最大信息系数(maximum information coefficient,MIC)分析多元负荷的耦合特性并通过多元相空间重构(multivariate phase space reconstruction,MPSR)丰富特征信息。最后,构建基于TCN的修正预测模型。以校园综合能源系统算例对比不同预测模型,结果显示所提修正预测框架的电、冷和热负荷预测均具有较低的平均绝对百分比误差,有效解决了预测中模态分解的模态混叠以及模态高频分量问题,实现预测误差修正。 展开更多
关键词 综合能源系统负荷预测 混合模态分解 最大信息系数 时序卷积神经网络 误差修正
在线阅读 下载PDF
贝叶斯优化超参数的空时融合压缩残差网络在风速区间预测中的研究 被引量:1
20
作者 伍耘 葛佳敏 +2 位作者 王文烨 李小勇 车亮 《电力系统保护与控制》 北大核心 2025年第1期13-23,共11页
针对风电场规划中风速的高随机性问题,提出了一种基于小样本空时融合压缩残差网络点预测(spatio-temporal integration and compression deep residual,STiCDRS)模型。该模型旨在深入挖掘风速序列中的空间和时间特征,以提升点预测精度... 针对风电场规划中风速的高随机性问题,提出了一种基于小样本空时融合压缩残差网络点预测(spatio-temporal integration and compression deep residual,STiCDRS)模型。该模型旨在深入挖掘风速序列中的空间和时间特征,以提升点预测精度。首先,采用空时融合压缩残差网络点预测模型得到点预测结果。然后,在此基础上采用新颖的空时融合压缩残差网络区间(STiCDRS-Gaussian process regression,STiCDRS-GPR)预测模型得到风速的区间预测结果,进而得到更为可靠的风速概率预测结果。该模型采用贝叶斯优化方法进行超参数选择,确保超参数的高效自动化调优。最后,使用内蒙古地区风电场的风速数据集,将STiCDRS模型与传统经典模型的预测结果进行对比。实验结果表明,相较于其他模型,所提STiCDRS-GPR模型在风速预测中具有更高的点预测精度、适宜的预测区间以及可靠的概率预测结果,充分展示了其在风速预测领域的良好应用潜力。 展开更多
关键词 风速预测 时序卷积网络 STiCDRS模型 GPR区间预测 贝叶斯优化
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部