期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
基于聚合混合模态分解和时序卷积神经网络的综合能源系统负荷修正预测 被引量:29
1
作者 李文武 张鹏宇 +2 位作者 石强 冯晨洋 李丹 《电网技术》 EI CSCD 北大核心 2022年第9期3345-3353,共9页
为增强综合能源系统负荷精细化分解水平,充分利用误差信息以进一步提升预测性能,提出一种基于聚合混合模态分解和时序卷积神经网络(temporal convolutional network,TCN)的综合能源系统负荷修正预测框架。首先,采用改进完全集合经验模... 为增强综合能源系统负荷精细化分解水平,充分利用误差信息以进一步提升预测性能,提出一种基于聚合混合模态分解和时序卷积神经网络(temporal convolutional network,TCN)的综合能源系统负荷修正预测框架。首先,采用改进完全集合经验模态分解对电、冷和热负荷初步分解处理,随后利用变分模态分解对具有强复杂性的子序列进一步分解。然后,依据最大信息系数(maximum information coefficient,MIC)分析多元负荷的耦合特性并通过多元相空间重构(multivariate phase space reconstruction,MPSR)丰富特征信息。最后,构建基于TCN的修正预测模型。以校园综合能源系统算例对比不同预测模型,结果显示所提修正预测框架的电、冷和热负荷预测均具有较低的平均绝对百分比误差,有效解决了预测中模态分解的模态混叠以及模态高频分量问题,实现预测误差修正。 展开更多
关键词 综合能源系统负荷预测 混合模态分解 最大信息系数 时序卷积神经网络 误差修正
在线阅读 下载PDF
基于时序卷积神经网络和纵横交叉算法的低压台区负荷预测
2
作者 丁伟锋 周震震 +3 位作者 谢振华 肖耀辉 黄和燕 何森 《电力系统保护与控制》 2025年第21期156-165,共10页
精准的电力负荷预测对低压台区运维至关重要。为提升台区电力负荷预测精度,提出一种纵横交叉算法(crisscross optimization algorithm,CSO)优化卷积注意力机制(convolutional block attention module,CBAM)和时序卷积神经网络(temporal ... 精准的电力负荷预测对低压台区运维至关重要。为提升台区电力负荷预测精度,提出一种纵横交叉算法(crisscross optimization algorithm,CSO)优化卷积注意力机制(convolutional block attention module,CBAM)和时序卷积神经网络(temporal convolutional network,TCN)的低压台区电力负荷预测模型。首先,建立以时序卷积神经网络为基础的预测模型,提取电力负荷输入序列隐含的时间规律。其次,在模型输入侧引入CBAM模块,通过在通道和空间上与模型输入进行加权,提高模型对关键特征的敏感性。最后,为解决模型参数易陷入局部最优、模型泛化性不高的问题,提出使用CSO对CBAM-TCN的全连接层进行二次优化。以广东省某地两个典型低压台区实测电力负荷数据集进行仿真建模,结果表明所提组合预测方法性能优于其他对比模型,并对其有效性进行了验证。 展开更多
关键词 低压台区 负荷预测 纵横交叉算法 时序卷积神经网络 卷积注意力机制
在线阅读 下载PDF
基于时序图神经网络的船闸液压状态预测方法
3
作者 喻峰 曾辉 +3 位作者 张家治 卢科普 熊志华 刘光武 《船海工程》 北大核心 2025年第5期131-136,共6页
提出一种基于时序卷积图神经网络(TCGCN)的船闸液压系统状态预测模型,旨在提升液压系统中压力和流量的预测精度。通过结合时间序列特征与空间特征,模型有效捕捉液压系统传感器数据的复杂时空关联。实验结果表明,TCGCN在压力和流量预测... 提出一种基于时序卷积图神经网络(TCGCN)的船闸液压系统状态预测模型,旨在提升液压系统中压力和流量的预测精度。通过结合时间序列特征与空间特征,模型有效捕捉液压系统传感器数据的复杂时空关联。实验结果表明,TCGCN在压力和流量预测任务中的表现优于传统方法和其他对比模型,尤其在应对多变量和非线性动态变化时展现出卓越的鲁棒性和准确性。通过消融实验,验证各模块(如时序卷积层、图卷积层及信息融合层)对模型性能的关键作用。 展开更多
关键词 船闸液压系统 状态预测 时序卷积神经网络 压力预测 流量预测
在线阅读 下载PDF
基于时序卷积网络的词级语言模型研究与应用 被引量:3
4
作者 李大舟 于广宝 +1 位作者 高巍 孟智慧 《计算机工程与设计》 北大核心 2021年第2期449-454,共6页
提出一种卷积神经网络——时序卷积神经网络。将该网络应用于语言模型,时序卷积神经网络的基本结构由输入层、扩大卷积层、因果卷积层、Relu层、Dropout层、输出层组成,将扩大卷积应用在语言模型中。实验结果表明,将语言模型的复杂度降... 提出一种卷积神经网络——时序卷积神经网络。将该网络应用于语言模型,时序卷积神经网络的基本结构由输入层、扩大卷积层、因果卷积层、Relu层、Dropout层、输出层组成,将扩大卷积应用在语言模型中。实验结果表明,将语言模型的复杂度降到83.21,误差降到3.87,该网络同RNN比较复杂度下降14%、误差下降0.69,该网络同LSTM比较复杂度下降13%、误差下降0.4,综合复杂度、误差两个指标,时序卷积网络优于其它基准模型。 展开更多
关键词 语言模型 扩大卷积 时序卷积神经网络 因果卷积 复杂度
在线阅读 下载PDF
土石坝渗流预测的BiTCN-Attention-LSSVM模型研究
5
作者 傅蜀燕 杨石勇 +2 位作者 陈德辉 王子轩 欧斌 《水资源与水工程学报》 北大核心 2025年第1期118-128,共11页
为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN... 为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN从前、后两个方向捕获时序数据中的长期依赖关系,引入Attention机制帮助模型专注于与预测相关的关键局部特征,并将BiTCN-Attention深度处理后的特征输入LSSVM模型中进行预测,最后以2个不同的数据集分析了模型的预测效果。案例分析表明:与LSSVM、CNN-LSSVM和TCN-LSSVM相比,BiTCN-Attention-LSSVM模型预测的各项评价指标均为最优,在土石坝测压管水位预测中展现出更高的模型精度和稳定性;BiTCN与Attention的相互结合能够更好地提取时序数据中的相互依赖关系,将BiTCN-Attention提取的特征输入LSSVM中进行预测可获得良好的预测性能,数据集扩充处理后有效提高了模型的学习能力。 展开更多
关键词 土石坝测压管水位 渗流预测 双向时序卷积神经网络 注意力机制 最小二乘支持向量机
在线阅读 下载PDF
基于增量预训练与对抗学习的古籍命名实体识别
6
作者 任乐 张仰森 +2 位作者 李剑龙 孙圆明 刘帅康 《计算机工程与设计》 北大核心 2025年第4期1190-1197,共8页
针对用于古籍命名实体识别古籍语料少、古文信息熵高的问题,构建基于二十四史的古籍文本语料库,并提出一种基于增量预训练和对抗学习的古籍命名实体识别模型(ANER-IPAL)。基于自建的古籍文本数据集,使用NEZHA-TCN模型进行预训练,在嵌入... 针对用于古籍命名实体识别古籍语料少、古文信息熵高的问题,构建基于二十四史的古籍文本语料库,并提出一种基于增量预训练和对抗学习的古籍命名实体识别模型(ANER-IPAL)。基于自建的古籍文本数据集,使用NEZHA-TCN模型进行预训练,在嵌入层融合对抗学习增强模型泛化能力,在解码层引入全局指针网络,将实体识别任务建模为子串提取任务,结合规则进行结果的矫正输出。实验结果表明,所提模型在“古籍命名实体识别2023”数据集(GuNER2023)上的F1值达到了95.34%,相较于基线模型NEZHA-GP提高了4.19%。 展开更多
关键词 二十四史 古籍命名实体识别 增量预训练 时序卷积神经网络 对抗学习 全局指针 子串提取
在线阅读 下载PDF
小样本量下的锂离子电池健康状态预测 被引量:1
7
作者 邓栋梁 银立新 +1 位作者 余瑾 黄先红 《电池》 北大核心 2025年第1期129-135,共7页
当前数据驱动的健康状态(SOH)预测方法依赖于庞大的数据规模。提出一种小样本量下的电池SOH预测方法:采用Levy飞行策略优化天鹰优化(AO)算法的权值和阈值;提出广义改进学习(GOBL)来生成更好的候选解集,以增加种群的多样性,加快优化方法... 当前数据驱动的健康状态(SOH)预测方法依赖于庞大的数据规模。提出一种小样本量下的电池SOH预测方法:采用Levy飞行策略优化天鹰优化(AO)算法的权值和阈值;提出广义改进学习(GOBL)来生成更好的候选解集,以增加种群的多样性,加快优化方法的收敛速度,得到改进天鹰优化(IAO)算法;利用IAO算法优化时序卷积神经网络(TCN)的权值和阈值,建立IAO-TCN电池SOH预测模型;在优化的TCN(IAO-TCN)模型基础上,引入多头注意力机制,使模型自动聚焦于电池数据的重要特征,提升预测模型的精度。通过马里兰大学电池数据进行实例分析,与TCN、极限学习机、长短期记忆神经网络和卷积神经网络等进行对比,发现所提模型平均误差控制在2.5%以内,准确率较其他模型提升10个百分点以上,稳定性、预测精度和泛化能力均较好。 展开更多
关键词 锂离子电池 健康状态(SOH)预测 时序卷积神经网络(TCN) 天鹰优化(AO)算法 多头注意力机制
在线阅读 下载PDF
基于ConvTCN-FLASH-Transducer的端到端语音识别
8
作者 代学欣 杨淑莹 《现代电子技术》 北大核心 2025年第12期47-53,共7页
针对语音识别编码器对FBank音频局部信息提取不足,不能充分挖掘帧与帧之间时序性的联系以及注意力机制复杂度高的问题,提出一种基于RNN-Transducer架构的ConvTCN-FLASH-Transducer模型。该模型采用卷积神经网络模块和FLASH注意力模块相... 针对语音识别编码器对FBank音频局部信息提取不足,不能充分挖掘帧与帧之间时序性的联系以及注意力机制复杂度高的问题,提出一种基于RNN-Transducer架构的ConvTCN-FLASH-Transducer模型。该模型采用卷积神经网络模块和FLASH注意力模块相结合的方法,首先使用多尺度卷积提取音频特征的局部信息,再通过时序卷积神经网络(TCN)提取音频特征中帧与帧之间的时序性特征,用于加强音频局部信息的联系。此外,采用挤压和激励机制增强不同通道之间的关联,并提升关键通道的重要程度。在中文开源普通话数据集THCHS30上进行训练和实验,结果表明,ConvTCN-FLASHTransducer模型最终字错误率降低至4.2%,识别效果更好。 展开更多
关键词 语音识别 时序卷积神经网络 FLASH模型 RNN-Transducer 特征提取 挤压和激励机制
在线阅读 下载PDF
基于AAT模型的毫米波大规模MIMO系统信道估计 被引量:2
9
作者 于舒娟 刘荣 +2 位作者 张昀 谢娜 黄丽亚 《通信学报》 EI CSCD 北大核心 2024年第3期41-49,共9页
针对毫米波大规模多输入多输出信道具有时间相关性、系统易受噪声因素影响导致信道估计精度低的问题,提出了一种基于改进的时序卷积神经网络信道估计方法。该方法将仿真获得的信道矩阵以二维图像数据方式输入系统;利用时间相关性进行特... 针对毫米波大规模多输入多输出信道具有时间相关性、系统易受噪声因素影响导致信道估计精度低的问题,提出了一种基于改进的时序卷积神经网络信道估计方法。该方法将仿真获得的信道矩阵以二维图像数据方式输入系统;利用时间相关性进行特征融合,构建集中注意力机制网络,增强系统模型对信道深层特征的提取能力;将AAN嵌入时序卷积神经网络中进行训练;系统输出去噪后的二维图像,即信道估计矩阵。仿真结果表明,所提信道估计方法在性能和复杂度方面优于传统的信道估计方法,并且当测试场景发生改变时依旧具有鲁棒性。 展开更多
关键词 大规模多输入多输出信道 时序卷积神经网络 信道估计 集中注意力机制网络
在线阅读 下载PDF
基于TCN的区域RC框架结构地震损伤评估
10
作者 李一民 康帅 +1 位作者 董正方 殷琳 《震灾防御技术》 CSCD 北大核心 2024年第4期698-705,共8页
为准确评估区域RC框架结构震后损伤状态,提出了基于时序卷积神经网络(Temporal Convolutional Neural Networks,TCN)模型的结构地震损伤评估方法。首先选取几何参数中的结构高度、x向跨度和设计参数中的抗震设防烈度、场地类别作为结构... 为准确评估区域RC框架结构震后损伤状态,提出了基于时序卷积神经网络(Temporal Convolutional Neural Networks,TCN)模型的结构地震损伤评估方法。首先选取几何参数中的结构高度、x向跨度和设计参数中的抗震设防烈度、场地类别作为结构特征参数,设计了48个RC框架结构模型;然后用OpenSees软件计算结构在地震过程中的加速度响应数据,采用最大层间位移角作为结构损伤指标,并建立结构损伤指标与加速度响应数据之间的映射关系,以此得到震损数据集;最后通过建立基于TCN模型的区域RC框架结构震损评估模型,利用贝叶斯优化算法找出模型中的最优参数组合,分析了TCN模型的损伤评估准确率、计算资源及在噪声作用下的泛化能力。研究结果表明,TCN模型损伤评估准确率高达86.6%,评估效果优于CNN-LSTM模型,且具有更少的参数量,在噪声作用下也有较好的鲁棒性。 展开更多
关键词 区域RC框架结构 地震响应 损伤评估 时序卷积神经网络
在线阅读 下载PDF
融合时空信息的刀具健康状态评估及寿命预测
11
作者 黄秋豪 吴兴富 +3 位作者 黄强飞 杨骅 牟全臣 李子瑞 《机械设计》 CSCD 北大核心 2024年第11期31-41,共11页
刀具的健康状态评估和寿命预测对于刀具的预测性维护、刀具生产准备及制定刀具需求计划等方面具有重要影响。为了准确监测刀具健康状态和预测剩余寿命,文中提出一种融合时空信息的刀具健康状态监测及寿命预测方法。该方法利用频谱时间... 刀具的健康状态评估和寿命预测对于刀具的预测性维护、刀具生产准备及制定刀具需求计划等方面具有重要影响。为了准确监测刀具健康状态和预测剩余寿命,文中提出一种融合时空信息的刀具健康状态监测及寿命预测方法。该方法利用频谱时间图神经网络StemGNN(Spectral Temporal Graph Neural Network),通过图结构表征时间序列间的关系,在频域和谱域对传感器数据的时空关系进行建模,重构学习刀具健康状态下的数据分布,并向模型输入运行周期数据,输出重构数据与原始数据的误差作为刀具退化过程的健康指标(Health Indicator, HI),形成刀具健康状态曲线;然后,将刀具健康状态指标作为输入构建基于通道注意力机制(ECANet)和时序卷积网络(TCN)的刀具寿命预测方法,学习健康指标序列时间依赖,实现了刀具的剩余寿命(Remaining Useful Life, RUL)预测。在PHM2010数据集上进行试验验证,结果表明,相较于对比方法,所提方法更好地反映了刀具的退化趋势,提高了刀具寿命的预测精度。 展开更多
关键词 刀具 健康状态评估 剩余寿命预测 频谱时间图神经网络 时序卷积神经网络
在线阅读 下载PDF
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion
12
作者 CHEN Shu-zong LIU Yun-xiao +3 位作者 WANG Yun-long QIAN Cheng HUA Chang-chun SUN Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3329-3348,共20页
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode... Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration. 展开更多
关键词 rolling mill vibration multi-dimension data multi-modal data convolutional neural network time series prediction
在线阅读 下载PDF
基于多头注意力机制的飞机发动机寿命预测研究 被引量:10
13
作者 聂磊 徐诗奕 +3 位作者 张吕凡 尹业寒 董正琼 周向东 《推进技术》 EI CAS CSCD 北大核心 2023年第8期192-200,共9页
针对飞机发动机监测参数多和预测模型不能充分提取监测数据的有效信息等问题,基于一维卷积神经网络(1DCNN)、时序卷积神经网络(TCN)和多头注意力机制,提出一种新的网络结构以实现飞机发动机剩余寿命的准确预测。对多维特征参数分别建立... 针对飞机发动机监测参数多和预测模型不能充分提取监测数据的有效信息等问题,基于一维卷积神经网络(1DCNN)、时序卷积神经网络(TCN)和多头注意力机制,提出一种新的网络结构以实现飞机发动机剩余寿命的准确预测。对多维特征参数分别建立一个1DCNN-TCN模型,利用两层1DCNN对飞机发动机的多元传感器信号进行特征提取,利用TCN对特征量的时序信息进行记忆,通过多头注意力机制对多个1DCNN-TCN的输出分别进行加权处理,并拼接最终结果。分析结果表明,采用本文方法得到的RMSE和Score值比目前文献中最优值分别降低了6.84%,63.41%。该方法显著提升了飞机发动机剩余寿命预测的准确性。 展开更多
关键词 飞机发动机 卷积神经网络 时序卷积神经网络 多头注意力机制 剩余寿命
在线阅读 下载PDF
基于Bootstrap误差修正的电力负荷短期预测深度学习模型 被引量:7
14
作者 张宇晨 姜雪松 +1 位作者 李春伟 刘森 《热力发电》 CAS CSCD 北大核心 2023年第3期121-129,共9页
针对负荷数据非线性、强波动性等特点导致数据规律性较弱电力负荷预测模型不准确的问题,构建基于Bootstrap误差修正的TCN-WOA-Bi LSTM-Attention电力负荷短期预测模型。使用时序卷积神经网络(TCN)提取时序特征并通过注意力机制(Attentio... 针对负荷数据非线性、强波动性等特点导致数据规律性较弱电力负荷预测模型不准确的问题,构建基于Bootstrap误差修正的TCN-WOA-Bi LSTM-Attention电力负荷短期预测模型。使用时序卷积神经网络(TCN)提取时序特征并通过注意力机制(Attention机制)对特征突出重要信息贡献度,通过鲸鱼优化算法(WOA)寻找双向长短时记忆(Bi LSTM)神经网络最优超参数以减少人工搜索超参数的负面影响后进行预测;基于Bootstrap分析预测区间误差分布,通过覆盖率(PICP)是否低于对应置信度判断对预测结果进行修正的必要性,并选取合理修正范围。仿真结果表明,基于Bootstrap方法进行误差修正避免了修正不足及修正过度的问题,对比将误差序列全部修正的方法更具有科学性,能最大程度提高模型预测精度。 展开更多
关键词 电力负荷短期预测 BOOTSTRAP 误差修正 时序卷积神经网络 鲸鱼优化算法
在线阅读 下载PDF
TCN-Transformer-CTC的端到端语音识别 被引量:20
15
作者 谢旭康 陈戈 +1 位作者 孙俊 陈祺东 《计算机应用研究》 CSCD 北大核心 2022年第3期699-703,共5页
基于Transformer的端到端语音识别系统获得广泛的普及,但Transformer中的多头自注意力机制对输入序列的位置信息不敏感,同时它灵活的对齐方式在面对带噪语音时泛化性能较差。针对以上问题,首先提出使用时序卷积神经网络(TCN)来加强神经... 基于Transformer的端到端语音识别系统获得广泛的普及,但Transformer中的多头自注意力机制对输入序列的位置信息不敏感,同时它灵活的对齐方式在面对带噪语音时泛化性能较差。针对以上问题,首先提出使用时序卷积神经网络(TCN)来加强神经网络模型对位置信息的捕捉,其次在上述基础上融合连接时序分类(CTC),提出TCN-Transformer-CTC模型。在不使用任何语言模型的情况下,在中文普通话开源语音数据库AISHELL-1上的实验结果表明,TCN-Transformer-CTC相较于Transformer字错误率相对降低了10.91%,模型最终字错误率降低至5.31%,验证了提出的模型具有一定的先进性。 展开更多
关键词 端到端语音识别 TRANSFORMER 时序卷积神经网络 连接时序分类
在线阅读 下载PDF
基于CEEMDAN-ConvLSTM组合模型的云计算负载预测方法 被引量:5
16
作者 赵鹏 周建涛 赵大明 《计算机科学》 CSCD 北大核心 2023年第S01期642-650,共9页
随着云计算技术的快速发展,越来越多的用户选择使用云服务。负载请求与资源供应的不匹配问题日益凸显,使得用户请求无法得到及时响应,极大地影响云服务质量,实时预测负载请求,将有助于及时供应资源。针对云计算环境中的负载预测方法性... 随着云计算技术的快速发展,越来越多的用户选择使用云服务。负载请求与资源供应的不匹配问题日益凸显,使得用户请求无法得到及时响应,极大地影响云服务质量,实时预测负载请求,将有助于及时供应资源。针对云计算环境中的负载预测方法性能低的问题,提出了一种基于自适应噪声的完备经验模态分解和卷积长时序神经网络组合模型(CEEMDAN-ConvLSTM)的云计算负载预测方法。首先运用自适应噪声的完备经验模态(CEEMDAN)分解技术对数据序列进行分解操作,将其转换为若干个易于分析和建模的子序列;然后运用卷积长时序神经网络(ConvLSTM)预测模型对这一系列子序列进行建模预测,并采用基于多进程并行计算的研究思路,实现多序列并行预测及贝叶斯优化调参;最后将预测值综合叠加以获得整个模型的预测输出,从而实现对原始复杂序列数据进行高精度预测的目标。使用Google集群工作负载数据集进行实验验证,实验结果表明,CEEMDAN-ConvLSTM组合模型具有良好的预测效果,相比自回归差分移动平均模型(ARIMA)、长短期记忆网络(LSTM)和卷积长时序神经网络(ConvLSTM),所提模型预测均方根误差(RMSE)指标分别提升了30.9%,30.1%和22.5%。 展开更多
关键词 云计算 负载预测 卷积时序神经网络(ConvLSTM) 模态分解技术 贝叶斯优化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部