时域离散伽辽金法(Discontinuous Galerkin Time Domain,DGTD)同时具有时域有限元算法(Finite Element Time Domain,FETD)非结构网格剖分和时域有限差分算法(Finite Difference Time Domain,FDTD)显式迭代的优点,是一种非常有前途的电...时域离散伽辽金法(Discontinuous Galerkin Time Domain,DGTD)同时具有时域有限元算法(Finite Element Time Domain,FETD)非结构网格剖分和时域有限差分算法(Finite Difference Time Domain,FDTD)显式迭代的优点,是一种非常有前途的电磁计算方法,该文首先描述了基于矢量基函数的时域离散伽辽金法的基本原理。然后,给出了DGTD处理散射问题时平面波入射加入的具体实现方法。最后,给出了金属球、介质球和金属弹头宽带散射的算例,算例结果的比较表明了该文算法的正确性和有效性。该文的研究,为复杂目标雷达散射截面RCS的准确预估打下了坚实的基础。展开更多
电磁场时域计算方法由于一次计算可以获得目标的时域响应,结合傅里叶变换得到宽带信息等的优势越来越受到关注.本文介绍了近年来时域有限差分(finite-difference time-domain,FDTD)法和时域有限元(finite element time-domain,FETD)无...电磁场时域计算方法由于一次计算可以获得目标的时域响应,结合傅里叶变换得到宽带信息等的优势越来越受到关注.本文介绍了近年来时域有限差分(finite-difference time-domain,FDTD)法和时域有限元(finite element time-domain,FETD)无条件稳定算法方面的研究进展以及FETD算法的更新方案--时域非连续伽辽金(discontinuous Galerkin time-domain,DGTD)方法的新进展.展开更多
尽管以二阶精度格式为基础的计算流体力学(CFD)方法和软件已经在航空航天飞行器设计中发挥了重要的作用,但是由于二阶精度格式的耗散和色散较大,对于湍流、分离等多尺度流动现象的模拟,现有成熟的CFD软件仍难以给出满意的结果,为此CFD...尽管以二阶精度格式为基础的计算流体力学(CFD)方法和软件已经在航空航天飞行器设计中发挥了重要的作用,但是由于二阶精度格式的耗散和色散较大,对于湍流、分离等多尺度流动现象的模拟,现有成熟的CFD软件仍难以给出满意的结果,为此CFD工作者发展了众多的高阶精度计算格式.如果以适应的计算网格来分类,一般可以分为基于结构网格的有限差分格式、基于非结构/混合网格的有限体积法和有限元方法,以及各种类型的混合方法.由于非结构/混合网格具有良好的几何适应性,基于非结构/混合网格的高阶精度格式近年来备受关注.本文综述了近年来基于非结构/混合网格的高阶精度格式研究进展,重点介绍了空间离散方法,主要包括k-Exact和ENO/WENO等有限体积方法,间断伽辽金(DG)有限元方法,有限谱体积(SV)和有限谱差分(SD)方法,以及近来发展的各种DG/FV混合算法和将各种方法统一在一个框架内的CPR(correction procedure via reconstruction)方法等.随后简要介绍了高阶精度格式应用于复杂外形流动数值模拟的一些需要关注的问题,包括曲边界的处理方法、间断侦测和限制器、各种加速收敛技术等.在综述过程中,介绍了各种方法的优势与不足,其间介绍了作者发展的基于"静动态混合重构"的DG/FV混合算法.最后展望了基于非结构/混合网格的高阶精度格式的未来发展趋势及应用前景.展开更多
文摘时域离散伽辽金法(Discontinuous Galerkin Time Domain,DGTD)同时具有时域有限元算法(Finite Element Time Domain,FETD)非结构网格剖分和时域有限差分算法(Finite Difference Time Domain,FDTD)显式迭代的优点,是一种非常有前途的电磁计算方法,该文首先描述了基于矢量基函数的时域离散伽辽金法的基本原理。然后,给出了DGTD处理散射问题时平面波入射加入的具体实现方法。最后,给出了金属球、介质球和金属弹头宽带散射的算例,算例结果的比较表明了该文算法的正确性和有效性。该文的研究,为复杂目标雷达散射截面RCS的准确预估打下了坚实的基础。
文摘尽管以二阶精度格式为基础的计算流体力学(CFD)方法和软件已经在航空航天飞行器设计中发挥了重要的作用,但是由于二阶精度格式的耗散和色散较大,对于湍流、分离等多尺度流动现象的模拟,现有成熟的CFD软件仍难以给出满意的结果,为此CFD工作者发展了众多的高阶精度计算格式.如果以适应的计算网格来分类,一般可以分为基于结构网格的有限差分格式、基于非结构/混合网格的有限体积法和有限元方法,以及各种类型的混合方法.由于非结构/混合网格具有良好的几何适应性,基于非结构/混合网格的高阶精度格式近年来备受关注.本文综述了近年来基于非结构/混合网格的高阶精度格式研究进展,重点介绍了空间离散方法,主要包括k-Exact和ENO/WENO等有限体积方法,间断伽辽金(DG)有限元方法,有限谱体积(SV)和有限谱差分(SD)方法,以及近来发展的各种DG/FV混合算法和将各种方法统一在一个框架内的CPR(correction procedure via reconstruction)方法等.随后简要介绍了高阶精度格式应用于复杂外形流动数值模拟的一些需要关注的问题,包括曲边界的处理方法、间断侦测和限制器、各种加速收敛技术等.在综述过程中,介绍了各种方法的优势与不足,其间介绍了作者发展的基于"静动态混合重构"的DG/FV混合算法.最后展望了基于非结构/混合网格的高阶精度格式的未来发展趋势及应用前景.