叶端定时是航空发动机叶片叶端振动非接触测量的有效手段,但其采样模式决定了所采信号具有高度欠采样特征,需要进行抗混叠频谱分析从而提取转子叶片固有频率这一关键指标。利用了前向平滑策略的改进多重信号分类法(multiple sIgnal clas...叶端定时是航空发动机叶片叶端振动非接触测量的有效手段,但其采样模式决定了所采信号具有高度欠采样特征,需要进行抗混叠频谱分析从而提取转子叶片固有频率这一关键指标。利用了前向平滑策略的改进多重信号分类法(multiple sIgnal classification,MUSIC)能实现抗混叠但无法充分发挥平滑方法的优势。因此,提出适用于叶端定时信号处理的前后向平滑MUSIC法,通过建立传感器的对称布局条件,利用前后向平滑方法代替前向平滑方法,得到更准确的自相关矩阵估计,进而提高叶片固有频率估计性能,并通过仿真和试验验证了在样本数量、算法参数等相同的情况下,前后向平滑MUSIC法的混叠与噪声抑制能力得到了提升。展开更多
多重信号分类(multiple signal classification,MUSIC)算法是一种经典的空间谱估计算法,其利用信号子空间和噪声子空间相互正交的特性,估计出入射信号的波达方向(direction of arrival,DOA)。文章以二维高精度DOA估计的应用需求为目标,...多重信号分类(multiple signal classification,MUSIC)算法是一种经典的空间谱估计算法,其利用信号子空间和噪声子空间相互正交的特性,估计出入射信号的波达方向(direction of arrival,DOA)。文章以二维高精度DOA估计的应用需求为目标,通过分析MUSIC算法中各个步骤的计算特点,提出了一种算法的实现方法,并在现场可编程门阵列(field programmable gate array,FPGA)上完成了各个模块硬件电路的设计验证。该方法利用矩阵元素行列序号的对称性,得到了一种计算协方差矩阵的并行化分解方案;采用阈值比较法提高特征分解速度的同时,避免了最值求解,降低了硬件复杂度;在谱峰搜索中使用分步搜索法来提高实时性,并设计了专用硬件电路计算方向向量,以节省存储资源和避免数据读取延时带来的性能损失;与传统实现方法相比,实现了高精度和高实时性的统一。实验结果表明,该方法中的硬件实现方案在100 MHz工作频率的FPGA芯片上,完成一次精度为0.1°的二维DOA估计耗时3~5ms,具有精度高、速度快、资源消耗少的优势。展开更多
针对二维多重信号分类(multiple signal classification,MUSIC)算法在进行波达方向(direction of arrival,DOA)估计时计算速度慢、运算复杂度高的缺点,提出基于鸡群算法的二维MUSIC谱峰搜索算法.该算法将鸡群算法与MUSIC算法相结合,在...针对二维多重信号分类(multiple signal classification,MUSIC)算法在进行波达方向(direction of arrival,DOA)估计时计算速度慢、运算复杂度高的缺点,提出基于鸡群算法的二维MUSIC谱峰搜索算法.该算法将鸡群算法与MUSIC算法相结合,在谱峰搜索部分应用鸡群算法优化,利用鸡群算法寻优能力强的优点,快速搜索出谱峰所对应的角度.仿真实验表明,鸡群算法能有效克服谱峰搜索中出现的计算量大、计算复杂度高等问题,通过与其他仿生算法相比较,鸡群算法具有更快的收敛性、更强的稳定性以及更好的精确度.展开更多
针对传统波达方向(Direction of Arrival,DOA)估计方法通过空间平滑对相干信号进行处理损失阵列孔径的问题,文章提出了一种基于协方差矩阵托普利兹(Toeplitz)矩阵重构的多重信号分类(Multiple Signal Classification,MUSIC)算法的波达...针对传统波达方向(Direction of Arrival,DOA)估计方法通过空间平滑对相干信号进行处理损失阵列孔径的问题,文章提出了一种基于协方差矩阵托普利兹(Toeplitz)矩阵重构的多重信号分类(Multiple Signal Classification,MUSIC)算法的波达方位估计方法。该方法首先根据阵列接收数据的协方差矩阵及其翻转矩阵来构造新协方差矩阵,并利用新协方差矩阵构造Toeplitz矩阵,然后对其进行特征值分解,得到Toeplitz矩阵的噪声子空间,利用噪声子空间求出信号空间谱,通过谱峰搜索估计入射信号的方位角。文中方法拓展了阵列孔径,增加了可估计相干信号的数量,提升了方位估计的性能,提高了阵列的空间分辨率。仿真和湖上实验数据处理结果表明,文中方法可估计出更多的相干信号,而且在低信噪比、少快拍以及信号入射角度间隔较小时仍然具有良好的方位估计性能。展开更多
方位估计和信号恢复分别是水下目标跟踪和识别的前提.基于平均时间延迟相关矩阵提出了一种复数域盲源分离方法,在此基础上实现了DOA估计和信号恢复.实验结果表明,该方法在同等条件下完成同样的方位分辨要优于多重信号分类(Multiple sign...方位估计和信号恢复分别是水下目标跟踪和识别的前提.基于平均时间延迟相关矩阵提出了一种复数域盲源分离方法,在此基础上实现了DOA估计和信号恢复.实验结果表明,该方法在同等条件下完成同样的方位分辨要优于多重信号分类(Multiple signal classification,MUSIC)方法.展开更多
文摘叶端定时是航空发动机叶片叶端振动非接触测量的有效手段,但其采样模式决定了所采信号具有高度欠采样特征,需要进行抗混叠频谱分析从而提取转子叶片固有频率这一关键指标。利用了前向平滑策略的改进多重信号分类法(multiple sIgnal classification,MUSIC)能实现抗混叠但无法充分发挥平滑方法的优势。因此,提出适用于叶端定时信号处理的前后向平滑MUSIC法,通过建立传感器的对称布局条件,利用前后向平滑方法代替前向平滑方法,得到更准确的自相关矩阵估计,进而提高叶片固有频率估计性能,并通过仿真和试验验证了在样本数量、算法参数等相同的情况下,前后向平滑MUSIC法的混叠与噪声抑制能力得到了提升。
文摘多重信号分类(multiple signal classification,MUSIC)算法是一种经典的空间谱估计算法,其利用信号子空间和噪声子空间相互正交的特性,估计出入射信号的波达方向(direction of arrival,DOA)。文章以二维高精度DOA估计的应用需求为目标,通过分析MUSIC算法中各个步骤的计算特点,提出了一种算法的实现方法,并在现场可编程门阵列(field programmable gate array,FPGA)上完成了各个模块硬件电路的设计验证。该方法利用矩阵元素行列序号的对称性,得到了一种计算协方差矩阵的并行化分解方案;采用阈值比较法提高特征分解速度的同时,避免了最值求解,降低了硬件复杂度;在谱峰搜索中使用分步搜索法来提高实时性,并设计了专用硬件电路计算方向向量,以节省存储资源和避免数据读取延时带来的性能损失;与传统实现方法相比,实现了高精度和高实时性的统一。实验结果表明,该方法中的硬件实现方案在100 MHz工作频率的FPGA芯片上,完成一次精度为0.1°的二维DOA估计耗时3~5ms,具有精度高、速度快、资源消耗少的优势。
文摘针对二维多重信号分类(multiple signal classification,MUSIC)算法在进行波达方向(direction of arrival,DOA)估计时计算速度慢、运算复杂度高的缺点,提出基于鸡群算法的二维MUSIC谱峰搜索算法.该算法将鸡群算法与MUSIC算法相结合,在谱峰搜索部分应用鸡群算法优化,利用鸡群算法寻优能力强的优点,快速搜索出谱峰所对应的角度.仿真实验表明,鸡群算法能有效克服谱峰搜索中出现的计算量大、计算复杂度高等问题,通过与其他仿生算法相比较,鸡群算法具有更快的收敛性、更强的稳定性以及更好的精确度.
文摘针对传统波达方向(Direction of Arrival,DOA)估计方法通过空间平滑对相干信号进行处理损失阵列孔径的问题,文章提出了一种基于协方差矩阵托普利兹(Toeplitz)矩阵重构的多重信号分类(Multiple Signal Classification,MUSIC)算法的波达方位估计方法。该方法首先根据阵列接收数据的协方差矩阵及其翻转矩阵来构造新协方差矩阵,并利用新协方差矩阵构造Toeplitz矩阵,然后对其进行特征值分解,得到Toeplitz矩阵的噪声子空间,利用噪声子空间求出信号空间谱,通过谱峰搜索估计入射信号的方位角。文中方法拓展了阵列孔径,增加了可估计相干信号的数量,提升了方位估计的性能,提高了阵列的空间分辨率。仿真和湖上实验数据处理结果表明,文中方法可估计出更多的相干信号,而且在低信噪比、少快拍以及信号入射角度间隔较小时仍然具有良好的方位估计性能。