在茶园水资源管理中,蒸散量(Evapotranspiration,ET)是评估作物水分需求的关键指标,由于茶园蒸散量预测具有时序性、不稳定性以及非线性耦合等特点,目前的茶园蒸散量预测模型存在预测精度较低的问题,针对此问题本文提出了一种新型的茶...在茶园水资源管理中,蒸散量(Evapotranspiration,ET)是评估作物水分需求的关键指标,由于茶园蒸散量预测具有时序性、不稳定性以及非线性耦合等特点,目前的茶园蒸散量预测模型存在预测精度较低的问题,针对此问题本文提出了一种新型的茶园蒸散量预测模型。首先使用互信息算法(Mutual information,MI)与主成分分析算法(Principal component analysis,PCA)相融合的数据处理算法(MIPCA),筛选强相关的特征并提取主成分;其次将时域卷积网络(Temporal convolutional network,TCN)与Transformer融合,利用灰狼算法(Grey wolf optimization,GWO)优化超参数,捕捉茶园数据的全局依赖关系;最后整合2个网络构建了MIPCA-TCN-GWO-Transformer模型,通过消融试验和对比试验验证了模型性能,并对模型在不同时间步长下的性能进行测试。结果表明,该模型平均绝对百分比误差(Mean absolute percentage error,MAPE)、均方根误差(Root mean square error,RMSE)和决定系数(Coefficient of determination,R^(2))3个评价指标分别为0.015 mm/d、0.312 mm/d和0.962,优于长短期记忆模型(Long short term memory,LSTM)等传统预测模型。在小时尺度、日尺度和月尺度下的R^(2)分别为0.986、0.978和0.946,在不同时间步长下展现了良好的适应性和准确性。本文构建的MIPCA-TCN-GWO-Transformer模型具有较高的预测精度和稳定性,可为茶园水资源优化管理和灌溉制度制定提供科学参考。展开更多
针对现有中文句子级唇语识别技术存在的视觉歧义、特征提取不充分导致识别准确率偏低的问题,提出了一种基于时域卷积网络,采用三维时空卷积的中文句子级唇语识别算法——3DT-CHLipNet(Chinese LipNet based on 3DCNN,TCN)。首先,针对特...针对现有中文句子级唇语识别技术存在的视觉歧义、特征提取不充分导致识别准确率偏低的问题,提出了一种基于时域卷积网络,采用三维时空卷积的中文句子级唇语识别算法——3DT-CHLipNet(Chinese LipNet based on 3DCNN,TCN)。首先,针对特征提取不充分的问题,所提算法采用了比长短期记忆网络(LSTM)感受野更大的时域卷积网络(temporal convolutional network,TCN)来提取长时依赖信息;其次,针对中文唇语识别中存在的“同型异义”视觉歧义问题,将自注意力机制应用于中文句子级唇语识别,以更好地捕获上下文信息,提升了句子预测准确率;最后,在数据预处理方面引入了时间掩蔽数据增强策略,进一步降低了算法模型的错误率。在最大的开源汉语普通话句子级数据集CMLR上的实验测试表明,与现有中文句子级唇语识别代表性算法相比,所提算法的识别准确率提高了2.17%至23.99%。展开更多
针对偏远地区军事系统光伏功率数据的复杂性以及现有光伏预测模型的精度低问题,提出一种基于时域卷积融合注意力机制的光伏功率预测方法。首先,利用皮尔逊相关系数识别主要变量作为输入序列,通过模糊C均值算法(fuzzy C-means,FCM)相似...针对偏远地区军事系统光伏功率数据的复杂性以及现有光伏预测模型的精度低问题,提出一种基于时域卷积融合注意力机制的光伏功率预测方法。首先,利用皮尔逊相关系数识别主要变量作为输入序列,通过模糊C均值算法(fuzzy C-means,FCM)相似日聚类将光伏功率数据划分为平稳、波动、突变3种类型以提高预测模型精确度;然后,采用自适应噪声完备集经验模态(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)分解方法对光伏功率进行分解,并根据排列熵进行重构。通过时域卷积网络(temporal convolutional network,TCN)作为时空特征提取层,并且嵌入高效通道注意力机制(efficient channel attention,ECA)单元增强卷积网络的的特征捕获能力;最后,通过双向长短期记忆网络(bidirectional long short term memory,BiLSTM)进行预测,输出功率预测结果。实验结果表明:所提出的模型具有较高的预测精度,能有效预测不同功率变化趋势下光伏出力情况。展开更多
文摘在茶园水资源管理中,蒸散量(Evapotranspiration,ET)是评估作物水分需求的关键指标,由于茶园蒸散量预测具有时序性、不稳定性以及非线性耦合等特点,目前的茶园蒸散量预测模型存在预测精度较低的问题,针对此问题本文提出了一种新型的茶园蒸散量预测模型。首先使用互信息算法(Mutual information,MI)与主成分分析算法(Principal component analysis,PCA)相融合的数据处理算法(MIPCA),筛选强相关的特征并提取主成分;其次将时域卷积网络(Temporal convolutional network,TCN)与Transformer融合,利用灰狼算法(Grey wolf optimization,GWO)优化超参数,捕捉茶园数据的全局依赖关系;最后整合2个网络构建了MIPCA-TCN-GWO-Transformer模型,通过消融试验和对比试验验证了模型性能,并对模型在不同时间步长下的性能进行测试。结果表明,该模型平均绝对百分比误差(Mean absolute percentage error,MAPE)、均方根误差(Root mean square error,RMSE)和决定系数(Coefficient of determination,R^(2))3个评价指标分别为0.015 mm/d、0.312 mm/d和0.962,优于长短期记忆模型(Long short term memory,LSTM)等传统预测模型。在小时尺度、日尺度和月尺度下的R^(2)分别为0.986、0.978和0.946,在不同时间步长下展现了良好的适应性和准确性。本文构建的MIPCA-TCN-GWO-Transformer模型具有较高的预测精度和稳定性,可为茶园水资源优化管理和灌溉制度制定提供科学参考。
文摘针对现有中文句子级唇语识别技术存在的视觉歧义、特征提取不充分导致识别准确率偏低的问题,提出了一种基于时域卷积网络,采用三维时空卷积的中文句子级唇语识别算法——3DT-CHLipNet(Chinese LipNet based on 3DCNN,TCN)。首先,针对特征提取不充分的问题,所提算法采用了比长短期记忆网络(LSTM)感受野更大的时域卷积网络(temporal convolutional network,TCN)来提取长时依赖信息;其次,针对中文唇语识别中存在的“同型异义”视觉歧义问题,将自注意力机制应用于中文句子级唇语识别,以更好地捕获上下文信息,提升了句子预测准确率;最后,在数据预处理方面引入了时间掩蔽数据增强策略,进一步降低了算法模型的错误率。在最大的开源汉语普通话句子级数据集CMLR上的实验测试表明,与现有中文句子级唇语识别代表性算法相比,所提算法的识别准确率提高了2.17%至23.99%。
文摘针对偏远地区军事系统光伏功率数据的复杂性以及现有光伏预测模型的精度低问题,提出一种基于时域卷积融合注意力机制的光伏功率预测方法。首先,利用皮尔逊相关系数识别主要变量作为输入序列,通过模糊C均值算法(fuzzy C-means,FCM)相似日聚类将光伏功率数据划分为平稳、波动、突变3种类型以提高预测模型精确度;然后,采用自适应噪声完备集经验模态(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)分解方法对光伏功率进行分解,并根据排列熵进行重构。通过时域卷积网络(temporal convolutional network,TCN)作为时空特征提取层,并且嵌入高效通道注意力机制(efficient channel attention,ECA)单元增强卷积网络的的特征捕获能力;最后,通过双向长短期记忆网络(bidirectional long short term memory,BiLSTM)进行预测,输出功率预测结果。实验结果表明:所提出的模型具有较高的预测精度,能有效预测不同功率变化趋势下光伏出力情况。