期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于小波变换的非平稳排气噪声信号阶次分析方法 被引量:9
1
作者 刘海涛 《振动与冲击》 EI CSCD 北大核心 2019年第22期29-35,51,共8页
汽车排气阶次噪声提取对于汽车声品质以及汽车分类识别具有重要的意义。为准确提取阶次噪声的时域信号,提出一种基于小波变换的非线性多分辨率的细化分析计算方法。通过理想带通传递函数构建基小波函数,基小波函数通过平移和伸缩实现信... 汽车排气阶次噪声提取对于汽车声品质以及汽车分类识别具有重要的意义。为准确提取阶次噪声的时域信号,提出一种基于小波变换的非线性多分辨率的细化分析计算方法。通过理想带通传递函数构建基小波函数,基小波函数通过平移和伸缩实现信号的局部细化分析。探索小波函数的截取方式对频谱泄漏的影响,选取合适的窗函数截取小波函数,并通过与时域噪声信号的相关变换准确提取各阶次成分的时域波动信号。通过实车测试获取加速工况下的转速脉冲信号和排气辐射噪声信号,对以上方法进行验证。结果表明,提出的分析方法可准确提取出非平稳排气噪声中的阶次成分,为排气噪声阶次分析提供标准可靠的信号处理手段。 展开更多
关键词 平稳时变信号 阶次 基小波函数 窗函数 相关变换
在线阅读 下载PDF
基于改进卷积神经网络的脑电信号焦虑情绪量化识别 被引量:8
2
作者 毛小玲 向往 +1 位作者 欧阳明昆 谢扬球 《广西科学》 CAS 北大核心 2022年第2期269-276,共8页
精确量化检出大学生的焦虑情绪并对病理因素进行追溯分析,是临床心理治疗和心理危机干预的重要环节,而基于脑电(Electroencephalograph,EEG)信号的深度学习是当前最具发展潜力的一种诊断方法。本研究对传统卷积神经网络(Convolutional N... 精确量化检出大学生的焦虑情绪并对病理因素进行追溯分析,是临床心理治疗和心理危机干预的重要环节,而基于脑电(Electroencephalograph,EEG)信号的深度学习是当前最具发展潜力的一种诊断方法。本研究对传统卷积神经网络(Convolutional Neural Networks,CNN)进行改进,提出并构造一个基于“扩展信息输入空间”的神经网络(Neural Network Based on Extended Information Input Space,NN-EIIS)模型,取代CNN末端的分类器;并引入具有独立性的被试对象焦虑量表得分(Score of Anxiety Scale,SAS),作为焦虑情绪量化标准和训练样本集的输出。以某高校大学生为研究对象进行实验,结果表明所提出的方案不仅实现了对焦虑情感的精确量化识别,还能利用所得模型,在一定程度上对大学生焦虑障碍患者的某些重要的内在病理因素进行追溯分析。 展开更多
关键词 卷积神经网络 脑电信号 焦虑情感量化识别 平稳时变信号处理 类别不平衡
在线阅读 下载PDF
基于自适应最稀疏时频分析的阶次方法及应用 被引量:6
3
作者 程军圣 李宝庆 +2 位作者 彭延峰 吴占涛 杨宇 《振动工程学报》 EI CSCD 北大核心 2016年第3期542-548,共7页
自适应最稀疏时频分析(Aadaptive and Sparsest Time-Frequency Analysis,ASTFA)是一种新的时频分析方法,该方法将信号分解转化为最优化问题,在优化的过程中实现信号的自适应分解。为解决ASTFA方法初始相位函数的选择问题,采用了分辨率... 自适应最稀疏时频分析(Aadaptive and Sparsest Time-Frequency Analysis,ASTFA)是一种新的时频分析方法,该方法将信号分解转化为最优化问题,在优化的过程中实现信号的自适应分解。为解决ASTFA方法初始相位函数的选择问题,采用了分辨率搜索改进的ASTFA方法,并进一步结合阶次分析方法提出了基于ASTFA的阶次方法。该方法首先采用改进的ASTFA方法对原始信号进行分解同时获得分量的瞬时幅值,然后对瞬时幅值进行阶次分析从而提取故障特征信息。将该方法应用于变速齿轮传动过程中的时变非平稳振动信号的分析与处理,仿真与实验分析表明该方法能够准确提取变速齿轮的故障特征信息,具有一定的优越性。 展开更多
关键词 自适应最稀疏时频分析 故障诊断 齿轮 阶次分析 时变非平稳信号
在线阅读 下载PDF
Evaluating ultrasound signals of carbon steel fatigue testing using signal analysis approaches 被引量:3
4
作者 M.M.Padzi S.Abdullah +2 位作者 M.Z.Nuawi S.M.Beden Z.M.Nopiah 《Journal of Central South University》 SCIE EI CAS 2014年第1期232-241,共10页
The application of ultrasound techniques to monitor the condition of structures is becoming more prominent because these techniques can detect the early symptoms of defects such as cracks and other defects.The early d... The application of ultrasound techniques to monitor the condition of structures is becoming more prominent because these techniques can detect the early symptoms of defects such as cracks and other defects.The early detection of defects is of vital importance to avoid major failures with catastrophic consequences.An assessment of an ultrasound technique was used to investigate fatigue damage behaviour.Fatigue tests were performed according to the ASTM E466-96 standard with the attachment of an ultrasound sensor to the test specimen.AISI 1045 carbon steel was used due to its wide application in the automotive industry.A fatigue test was performed under constant loading stress at a sampling frequency of 8 Hz.Two sets of data acquisition systems were used to collect the fatigue strain signals and ultrasound signals.All of the signals were edited and analysed using a signal processing approach.Two methods were used to evaluate the signals,the integrated Kurtosis-based algorithm for z-filter technique(I-kaz) and the short-time Fourier transform(STFT).The fatigue damage behaviour was observed from the initial stage until the last stage of the fatigue test.The results of the I-kaz coefficient and the STFT spectrum were used to explain and describe the behaviour of the fatigue damage.I-kaz coefficients were ranged from 60 to 61 for strain signals and ranged from 5 to 76 for ultrasound signals.I-kaz values tend to be high at failure point due to high amplitude of respective signals.STFT spectrogram displays the colour intensity which represents the damage severity of the strain signals.I-kaz technique is found very useful and capable in assessing both stationary and non-stationary signals while STFT technique is suitable only for non-stationary signals by displaying its spectrogram. 展开更多
关键词 FATIGUE ULTRASOUND signal analysis integrated Kurtosis-based algorithm for z-filter technique short-time Fouriertransform
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部