期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
采用种群平均信息和精英变异的改进粒子群算法 被引量:4
1
作者 林国汉 章兢 刘朝华 《计算机应用》 CSCD 北大核心 2014年第11期3241-3244,3249,共5页
针对基本粒子群优化(PSO)算法早熟收敛和后期搜索效率低的问题,提出一种利用种群平均信息和精英变异的粒子群优化算法——MEPSO算法。该算法引入粒子个体与群体的平均信息,利用粒子平均信息来提高算法全局搜索能力,并采用时变加速系数(T... 针对基本粒子群优化(PSO)算法早熟收敛和后期搜索效率低的问题,提出一种利用种群平均信息和精英变异的粒子群优化算法——MEPSO算法。该算法引入粒子个体与群体的平均信息,利用粒子平均信息来提高算法全局搜索能力,并采用时变加速系数(TVAC)以平衡算法的局部搜索和全局搜索能力;在算法后期,采用精英学习策略对精英粒子进行柯西变异操作,以进一步提高算法的全局搜索能力,减少算法陷入局部最优的危险。在6个典型的复杂函数上与基本PSO(BPSO)算法、时变加速因子PSO(PSO-TVAC)算法、时变惯性权重PSO(PSO-TVIW)算法和小波变异PSO(HPSOWM)算法进行对比,MEPSO的均值与标准方差均优于对比算法,且寻优时间最短,可靠性更好。结果表明,MEPSO能较好地兼顾局部搜索和全局搜索能力,收敛速度快,收敛精度和搜索效率高。 展开更多
关键词 粒子群优化 平均搜索 柯西变异 时变加速因子 全局搜索
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部