The orientation effect of θʹ precipitates in stress-aged Al-Cu alloys has ambiguous interpretations. One view is that θʹ precipitates prefer to grow on the habit planes perpendicular to the applied compressive stres...The orientation effect of θʹ precipitates in stress-aged Al-Cu alloys has ambiguous interpretations. One view is that θʹ precipitates prefer to grow on the habit planes perpendicular to the applied compressive stress, while the other view suggests growth on habit planes parallel to the applied stress. In this study, stress-aged Al-4 wt.%Cu single crystal was sampled from three different <100>Al zone axes to observe the distribution of θʹ precipitates. A hybrid Monte-Carlo/ molecular dynamics simulations were used to investigate the orientation effect of θʹ precipitates. The simulation results are consistent with experimental observations and indicate that θʹ precipitates prefer to grow on the habit planes that are parallel to the direction of the applied compressive stress, not along the planes perpendicular to it. It is also found that 1/2<110> perfect dislocations are generated as θʹ precipitates plates grow thicker, and the reaction of 1/2<110> perfect dislocations decomposing into 1/6<112> Shockley dislocations lead to an increase in the length of θʹ precipitates. The former does not enhance the orientation effect, whereas the latter leads to a more significant orientation effect. Additionally, the degree of the orientation effect of θʹ precipitates is determined by the reduction of 1/2<110> dislocations with a positive correlation between them.展开更多
In this paper,a novel train positioning method considering satellite raw observation data was proposed,which aims to promote train positioning performance from an innovative perspective of the train satellite-based po...In this paper,a novel train positioning method considering satellite raw observation data was proposed,which aims to promote train positioning performance from an innovative perspective of the train satellite-based positioning error sources.The method focused on overcoming the abnormal observations in satellite observation data caused by railway environment rather than the positioning results.Specifically,the relative positioning experimental platform was built and the zero-baseline method was firstly employed to evaluate the carrier phase data quality,and then,GNSS combined observation models were adopted to construct the detection values,which were applied to judge abnormal-data through the dual-frequency observations.Further,ambiguity fixing optimization was investigated based on observation data selection in partly-blocked environments.The results show that the proposed method can effectively detect and address abnormal observations and improve positioning stability.Cycle slips and gross errors can be detected and identified based on dual-frequency global navigation satellite system data.After adopting the data selection strategy,the ambiguity fixing percentage was improved by 29.2%,and the standard deviation in the East,North,and Up components was enhanced by 12.7%,7.4%,and 12.5%,respectively.The proposed method can provide references for train positioning performance optimization in railway environments from the perspective of positioning error sources.展开更多
The asymmetric creep aging behaviors of a pre-treated Al-Zn-Mg-Cu alloy under high and low stresses have been investigated for high precision creep age forming application of aluminum integral panels.With the increase...The asymmetric creep aging behaviors of a pre-treated Al-Zn-Mg-Cu alloy under high and low stresses have been investigated for high precision creep age forming application of aluminum integral panels.With the increase of applied stress,the creep strains under the tensile stresses are higher than those of compressive stresses and the asymmetry of creep strain is more obvious.However,the mechanical properties of tensile stress creep aged samples are lower than those of compressive stress creep aged samples.Dislocation density,dislocation moving velocity and the proportion of precipitates directly lead to the asymmetry of creep strain and mechanical properties after tensile-compressive creep aging process.In addition,the tensile and compressive stresses have little effect on the width of the precipitate-free zone(PFZ).It indicates that in the high stress creep age forming process of the pretreated Al-Zn-Mg-Cu alloy,the tensile stress promotes the dislocation motion to obtain a better creep strain but weakens its mechanical properties compared with the compressive stress.In the field of civil aviation aircraft component manufacturing,the introduction of tension and compression stress asymmetry into the creep constitutive model may improve the accuracy of creep age forming components.展开更多
In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 ...In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 aluminum alloy are studied.The result show that ECAP induces numerous substructures and dislocations,effectively promoting the precipitation of theηʹphase exhibiting a bimodal structure during inter-pass aging.Following inter-pass aging and subsequent ECAP,the decrease in grain size(4.8μm)is together with the increase in dislocation density(1.24×10^(15) m^(−2))due to the pinning effect of the precipitated phase.Simultaneously,the dislocation motion causes the second phase particles to become even finer and more diffuse.The synergistic effects of precipitation strengthening,fine grain strengthening,and dislocation strengthening collectively enhance the high strength of aluminum alloys,with ultimate tensile strength and yield strength reaching approximately 610 and 565 MPa,respectively.Meanwhile,ductility remains largely unchanged,primarily due to coordinated grain boundary sliding and the uniform and fine dispersion of second phase particles.展开更多
Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is w...Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is widely used in mineral resource exploration due to its direct correlation with underground electrochemical gradients.This paper presented the design and construction of an experimental platform based on a multi-channel SP monitoring system.The proposed platform was used to monitor the anodizing corrosion process of different metal blocks from a laboratory perspective,record the real-time SP signal generated by the redox reaction,as well as investigate the geobattery mechanism associated with the natural polarization process of metal mineral resources.The experimental results demonstrate that the constructed SP monitoring platform effectively captures time-series SP signals and provides direct laboratory evidence for the geobattery model.The measured SP data were quantitatively interpreted using the simulated annealing algorithm,and the inversion results closely match the real model.This finding highlights the potential of the SP method as a promising tool for determining the location and spatial distribution of underground polarizers.The study holds reference value for the exploration and exploitation of mineral resources in both terrestrial and marine environments.展开更多
The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formabilit...The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion.展开更多
Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the...Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.展开更多
The mechanical properties and microstructure of Al-Cu-Li alloy sheets subjected to cryorolling(-100 ° C,-190 ℃) or hot rolling(400 ℃) and subsequent aging at 160 ℃ for different times were investigated. The dy...The mechanical properties and microstructure of Al-Cu-Li alloy sheets subjected to cryorolling(-100 ° C,-190 ℃) or hot rolling(400 ℃) and subsequent aging at 160 ℃ for different times were investigated. The dynamic precipitation and dislocation characterizations were examined via transmission electron microscopy and X-ray diffraction. The grain morphologies and the fracture-surface morphologies were studied via optical microscopy and scanning electron microscopy. Samples subjected to cryorolling followed by aging exhibited relatively high dislocation densities and a large number of precipitates compared with hot-rolled samples. The samples cryorolled at-190 ℃ and then aged for 15 h presented the highest ultimate tensile strength(586 MPa), while the alloy processed via hot rolling followed by 10 h aging exhibited the highest uniform elongation rate(11.5%). The size of precipitates increased with the aging time, which has significant effects on the interaction mechanism between dislocations and precipitates. Bowing is the main interaction method between the deformation-induced dislocations and coarsened precipitates during tensile tests, leading to the decline of the mechanical properties of the alloy during overaging. These interesting findings can provide significant insights into the development of materials possessing both excellent strength and high ductility.展开更多
In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accele...In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.展开更多
In order to reveal the changing law of the mechanical response of asphalt pavements under the action of vehicle load and provide references for the design of durable pavements,three typical asphalt pavement structures...In order to reveal the changing law of the mechanical response of asphalt pavements under the action of vehicle load and provide references for the design of durable pavements,three typical asphalt pavement structures with flexible base(S1),combined base(S2),and semi-rigid base(S3)were selected to perform field strain tests under static and dynamic load using the fiber Bragg grating optical sensing technology.The changing characteristics of the strain field along the horizontal and depth directions of pavements were analyzed.The results indicate that the most unfavorable asphalt pavement layers were the upper-middle surface layer and the lower base layer.In addition,the most unfavorable loading positions on the surface layer and the base layer were the center of wheel load and the gap center between two wheels,respectively.The most unfavorable layer of the surface layers gradually moved from the lower layer to the upper layer with the increase of base layer modulus.The power function relationships between structural layer strain and vehicle speed were revealed.The semi-rigid base asphalt pavement was the most durable pavement type,since its strain value was lower compared to those of the other structures.展开更多
Because the signals of global positioning system (GPS) satellites are susceptible to obstructions in urban environment with many high buildings around, the number of GPS useful satellites is usually less than six. I...Because the signals of global positioning system (GPS) satellites are susceptible to obstructions in urban environment with many high buildings around, the number of GPS useful satellites is usually less than six. In this case, the receiver autonomous integrity monitoring (RAIM) method earmot exclude faulty satellite. In order to improve the performance of RAIM method and obtain the reliable positioning results with five satellites, the series of receiver clock bias (RCB) is regarded as one useful satellite and used to aid RAIM method. From the point of nonlinear series, a grey-Markov model for predicting the RCB series based on grey theory and Markov chain is presented. And then the model is used for aiding RAIM method in order to exclude faulty satellite. Experimental results demonstrate that the prediction model is fit for predicting the RCB series, and with the clock-based RAIM method the faulty satellite can be correctly excluded and the positioning precision of GPS receiver can be improved for the case where there are only five useful satellites.展开更多
A three-DOF (degree of freedom) planar robot completely restrained and positioned parallel pulled by four wires was studied. The wire driving properties were analyzed through experiments. The restrained three-DOF plan...A three-DOF (degree of freedom) planar robot completely restrained and positioned parallel pulled by four wires was studied. The wire driving properties were analyzed through experiments. The restrained three-DOF planar platform was established based on slippery course and bearing, and dSPACE real-time control system was used to perform the platform's motion control experiment on robot. Based on the kinematic equation and mechanical balance equation of moving platform, the stiffness of the robot system was analyzed and the calibration scheme of the system considering wire tension was put forward. Position servo control experiments were carried out, position servo tracking precision was analyzed, and real-time wire tension was detected. The results show that the moving error of the moving platform tracking is small (the maximum difference is about 3%), and the rotation error is large (the maximum difference is about 12%). The wire tension has wave properties (the wire tension fluctuation is about 10 N).展开更多
Submicro α-Fe2O3 coatings were formed using electrophoretic deposition(EPD) technique in aqueous media. The zeta potentials of different α-Fe2O3 suspensions with different additives were measured as a function of p ...Submicro α-Fe2O3 coatings were formed using electrophoretic deposition(EPD) technique in aqueous media. The zeta potentials of different α-Fe2O3 suspensions with different additives were measured as a function of p H to identify the optimum suspension condition for deposition. Electrophoretic depositions of α-Fe2O3 coatings under different applied electric fields and deposition time were studied and the effects of applied voltages and deposition time on deposition rates and thicknesses were investigated. The particle packing densities of the deposits at various applied voltages and deposition time were also analyzed by a scanning electron microscope(SEM). The results show that crack-free α-Fe2O3 coatings with uniform microstructure and good adherence to the nickel substrates are successfully obtained. Electrophoretic deposited α-Fe2O3 coating from aqueous suspension is a feasible, low-cost and environmental friendly method.展开更多
In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position inf...In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position information of measuring point.Utilizing very fast simulated annealing(VFSA) to fit the theoretical electromagnetic force(EMF) and measured EMF could obtain the all-time apparent resistivity of the measuring points in rectangular transmitting loop.The selective cope of initial model of VFSA could be confirmed by taking the late time apparent resistivity of transient electromagnetic method as the prior information.For verifying the correctness,the all-time apparent resistivities of the geoelectric models were calculated by VFSA and dichotomy,respectively.The results indicate that the relative differences of apparent resistivities calculated by these two methods are within 3%.The change of measuring point position has little influence on the tracing pattern of all-time apparent resistivity.The first branch of the curve of all-time apparent resistivity is close to the resistivity of the first layer medium and the last branch is close to the resistivity of the last layer medium,which proves the correctness of the arithmetics proposed.展开更多
The art of cricket bowling is complex and arduous owing to the run-up and ball release time energy requirement to achieve speed and variations. Therefore, human bowlers cannot bowl for extended periods and numerous me...The art of cricket bowling is complex and arduous owing to the run-up and ball release time energy requirement to achieve speed and variations. Therefore, human bowlers cannot bowl for extended periods and numerous mechanical bowling machines have been built to help batsmen improve their skills during practice sessions. However, most of these existing machines are designed for spherical balls ignoring the distinguishing physical feature of a cricket ball: the raised equatorial seam, which makes it less of a sphere. The bowlers are known to often benefit from this seam in their pursuit to taking the batsmen's wicket by imparting swing, spin and bounce variations along-with other bowling variables. This lack of the seam consideration creates a void between human and mechanical bowling. In this work, we present design and development of an automatic bowling machine termed as ROBOWLER to make mechanical bowling more realistic. This machine ensures ball seam position as well as fulfills other constraints. Ball pitching and seam position accuracy results underscore the suitability of this design to enhance the capabilities of mechanical bowling.展开更多
基金Project(2023YFB3710503) supported by the National Key R&D Program of ChinaProject(52305439) supported by the National Natural Science Foundation of China。
文摘The orientation effect of θʹ precipitates in stress-aged Al-Cu alloys has ambiguous interpretations. One view is that θʹ precipitates prefer to grow on the habit planes perpendicular to the applied compressive stress, while the other view suggests growth on habit planes parallel to the applied stress. In this study, stress-aged Al-4 wt.%Cu single crystal was sampled from three different <100>Al zone axes to observe the distribution of θʹ precipitates. A hybrid Monte-Carlo/ molecular dynamics simulations were used to investigate the orientation effect of θʹ precipitates. The simulation results are consistent with experimental observations and indicate that θʹ precipitates prefer to grow on the habit planes that are parallel to the direction of the applied compressive stress, not along the planes perpendicular to it. It is also found that 1/2<110> perfect dislocations are generated as θʹ precipitates plates grow thicker, and the reaction of 1/2<110> perfect dislocations decomposing into 1/6<112> Shockley dislocations lead to an increase in the length of θʹ precipitates. The former does not enhance the orientation effect, whereas the latter leads to a more significant orientation effect. Additionally, the degree of the orientation effect of θʹ precipitates is determined by the reduction of 1/2<110> dislocations with a positive correlation between them.
基金Project(52272339)supported by the National Natural Science Foundation of ChinaProject(2023YFB390730303)supported by the National Key Research and Development Program of China+2 种基金Project(L2023G004)supported by the Science and Technology Research and Development Program of China State Railway Group Co.,Ltd.Project(QZKFKT2023-005)supported by the State Key Laboratory of Heavy-duty and Express High-power Electric Locomotive,ChinaProject(2022JZZ05)supported by the Open Foundation of MOE Key Laboratory of Engineering Structures of Heavy Haul Railway(Central South University),China。
文摘In this paper,a novel train positioning method considering satellite raw observation data was proposed,which aims to promote train positioning performance from an innovative perspective of the train satellite-based positioning error sources.The method focused on overcoming the abnormal observations in satellite observation data caused by railway environment rather than the positioning results.Specifically,the relative positioning experimental platform was built and the zero-baseline method was firstly employed to evaluate the carrier phase data quality,and then,GNSS combined observation models were adopted to construct the detection values,which were applied to judge abnormal-data through the dual-frequency observations.Further,ambiguity fixing optimization was investigated based on observation data selection in partly-blocked environments.The results show that the proposed method can effectively detect and address abnormal observations and improve positioning stability.Cycle slips and gross errors can be detected and identified based on dual-frequency global navigation satellite system data.After adopting the data selection strategy,the ambiguity fixing percentage was improved by 29.2%,and the standard deviation in the East,North,and Up components was enhanced by 12.7%,7.4%,and 12.5%,respectively.The proposed method can provide references for train positioning performance optimization in railway environments from the perspective of positioning error sources.
基金Project(2021YFB3400900)supported by the National Key R&D Program of ChinaProjects(51905551,52205435)supported by the National Natural Science Foundation of China Youth Foundation+1 种基金Project(2022ZZTS0196)supported by the Fundamental Research Founds for the Central Universities,ChinaProject(CX20220282)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China。
文摘The asymmetric creep aging behaviors of a pre-treated Al-Zn-Mg-Cu alloy under high and low stresses have been investigated for high precision creep age forming application of aluminum integral panels.With the increase of applied stress,the creep strains under the tensile stresses are higher than those of compressive stresses and the asymmetry of creep strain is more obvious.However,the mechanical properties of tensile stress creep aged samples are lower than those of compressive stress creep aged samples.Dislocation density,dislocation moving velocity and the proportion of precipitates directly lead to the asymmetry of creep strain and mechanical properties after tensile-compressive creep aging process.In addition,the tensile and compressive stresses have little effect on the width of the precipitate-free zone(PFZ).It indicates that in the high stress creep age forming process of the pretreated Al-Zn-Mg-Cu alloy,the tensile stress promotes the dislocation motion to obtain a better creep strain but weakens its mechanical properties compared with the compressive stress.In the field of civil aviation aircraft component manufacturing,the introduction of tension and compression stress asymmetry into the creep constitutive model may improve the accuracy of creep age forming components.
基金Project(52275350)supported by the National Natural Science Foundation of ChinaProject(0301006)supported by the International Cooperative Scientific Research Platform of SUES,China。
文摘In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 aluminum alloy are studied.The result show that ECAP induces numerous substructures and dislocations,effectively promoting the precipitation of theηʹphase exhibiting a bimodal structure during inter-pass aging.Following inter-pass aging and subsequent ECAP,the decrease in grain size(4.8μm)is together with the increase in dislocation density(1.24×10^(15) m^(−2))due to the pinning effect of the precipitated phase.Simultaneously,the dislocation motion causes the second phase particles to become even finer and more diffuse.The synergistic effects of precipitation strengthening,fine grain strengthening,and dislocation strengthening collectively enhance the high strength of aluminum alloys,with ultimate tensile strength and yield strength reaching approximately 610 and 565 MPa,respectively.Meanwhile,ductility remains largely unchanged,primarily due to coordinated grain boundary sliding and the uniform and fine dispersion of second phase particles.
基金Project(42174170)supported by the National Natural Science Foundation of China。
文摘Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is widely used in mineral resource exploration due to its direct correlation with underground electrochemical gradients.This paper presented the design and construction of an experimental platform based on a multi-channel SP monitoring system.The proposed platform was used to monitor the anodizing corrosion process of different metal blocks from a laboratory perspective,record the real-time SP signal generated by the redox reaction,as well as investigate the geobattery mechanism associated with the natural polarization process of metal mineral resources.The experimental results demonstrate that the constructed SP monitoring platform effectively captures time-series SP signals and provides direct laboratory evidence for the geobattery model.The measured SP data were quantitatively interpreted using the simulated annealing algorithm,and the inversion results closely match the real model.This finding highlights the potential of the SP method as a promising tool for determining the location and spatial distribution of underground polarizers.The study holds reference value for the exploration and exploitation of mineral resources in both terrestrial and marine environments.
基金Projects(52274404,52305441,U22A20190)supported by the National Natural Science Foundation of ChinaProjects(2022JJ20065,2023JJ40739)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2022RC1001)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2023ZZTS0972)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2021YFB3400903)supported by the National Key R&D Program of China。
文摘The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion.
基金supported by the Project of State Grid Hebei Electric Power Co.,Ltd.(SGHEYX00SCJS2100077).
文摘Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.
基金Project(2019YFB2006500) supported by the National Key Research and Development Program,ChinaProject(51674303) supported by the National Natural Science Foundation of China+3 种基金Project(2020GK2032) supported by Hunan High-tech Industry Science and Technology Innovation Leading Plan,ChinaProject (2018RS3015) supported by the Huxiang High-level Talent Gathering Project of Hunan Province,ChinaProject(2017YFA0700700) supported by the Ministry of Science&Technology of ChinaProject(2019CX006) supported by Innovation Driven Program of Central South University,China。
文摘The mechanical properties and microstructure of Al-Cu-Li alloy sheets subjected to cryorolling(-100 ° C,-190 ℃) or hot rolling(400 ℃) and subsequent aging at 160 ℃ for different times were investigated. The dynamic precipitation and dislocation characterizations were examined via transmission electron microscopy and X-ray diffraction. The grain morphologies and the fracture-surface morphologies were studied via optical microscopy and scanning electron microscopy. Samples subjected to cryorolling followed by aging exhibited relatively high dislocation densities and a large number of precipitates compared with hot-rolled samples. The samples cryorolled at-190 ℃ and then aged for 15 h presented the highest ultimate tensile strength(586 MPa), while the alloy processed via hot rolling followed by 10 h aging exhibited the highest uniform elongation rate(11.5%). The size of precipitates increased with the aging time, which has significant effects on the interaction mechanism between dislocations and precipitates. Bowing is the main interaction method between the deformation-induced dislocations and coarsened precipitates during tensile tests, leading to the decline of the mechanical properties of the alloy during overaging. These interesting findings can provide significant insights into the development of materials possessing both excellent strength and high ductility.
基金Project(61301181) supported by the National Natural Science Foundation of China
文摘In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.
基金Projects(51908071,51708071)supported by National Natural Science Foundation of ChinaProject(2020JJ5975)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(18C0194)supported by the Scientific Research Project of Education Department of Hunan Province,ChinaProject(kfj190301)supported by Open Fund of Key Laboratory of Road Structure and Material of Ministry of Transport(Changsha University of Science&Technology),China。
文摘In order to reveal the changing law of the mechanical response of asphalt pavements under the action of vehicle load and provide references for the design of durable pavements,three typical asphalt pavement structures with flexible base(S1),combined base(S2),and semi-rigid base(S3)were selected to perform field strain tests under static and dynamic load using the fiber Bragg grating optical sensing technology.The changing characteristics of the strain field along the horizontal and depth directions of pavements were analyzed.The results indicate that the most unfavorable asphalt pavement layers were the upper-middle surface layer and the lower base layer.In addition,the most unfavorable loading positions on the surface layer and the base layer were the center of wheel load and the gap center between two wheels,respectively.The most unfavorable layer of the surface layers gradually moved from the lower layer to the upper layer with the increase of base layer modulus.The power function relationships between structural layer strain and vehicle speed were revealed.The semi-rigid base asphalt pavement was the most durable pavement type,since its strain value was lower compared to those of the other structures.
基金Project(20090580013) supported by the Aeronautic Science Foundation of ChinaProject(ZYGX2010J119) supported by the Fundamental Research Funds for the Central Universities,China
文摘Because the signals of global positioning system (GPS) satellites are susceptible to obstructions in urban environment with many high buildings around, the number of GPS useful satellites is usually less than six. In this case, the receiver autonomous integrity monitoring (RAIM) method earmot exclude faulty satellite. In order to improve the performance of RAIM method and obtain the reliable positioning results with five satellites, the series of receiver clock bias (RCB) is regarded as one useful satellite and used to aid RAIM method. From the point of nonlinear series, a grey-Markov model for predicting the RCB series based on grey theory and Markov chain is presented. And then the model is used for aiding RAIM method in order to exclude faulty satellite. Experimental results demonstrate that the prediction model is fit for predicting the RCB series, and with the clock-based RAIM method the faulty satellite can be correctly excluded and the positioning precision of GPS receiver can be improved for the case where there are only five useful satellites.
基金Project(20102304120007) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(QC2010009)supported by the Natural Science Foundation of Heilongjiang Province, China+1 种基金Projects(20110491030, LBH-Z10219) supported by China Postdoctoral Science FoundationProject(HEUCF120706) supported by the Fundamental Research Funds for the Central Universities of China
文摘A three-DOF (degree of freedom) planar robot completely restrained and positioned parallel pulled by four wires was studied. The wire driving properties were analyzed through experiments. The restrained three-DOF planar platform was established based on slippery course and bearing, and dSPACE real-time control system was used to perform the platform's motion control experiment on robot. Based on the kinematic equation and mechanical balance equation of moving platform, the stiffness of the robot system was analyzed and the calibration scheme of the system considering wire tension was put forward. Position servo control experiments were carried out, position servo tracking precision was analyzed, and real-time wire tension was detected. The results show that the moving error of the moving platform tracking is small (the maximum difference is about 3%), and the rotation error is large (the maximum difference is about 12%). The wire tension has wave properties (the wire tension fluctuation is about 10 N).
基金Project(51021063)supported by the National Natural Science Foundation for Innovation Group of ChinaProject(2012M521540)supported by China Postdoctoral Science Foundation+1 种基金Project(2013RS4027)supported by the Post Doctoral Scientific Foundation of Hunan Province,ChinaProject(CSUZC2013023)supported by the Precious Apparatus Open Share Foundation of Central South University,China
文摘Submicro α-Fe2O3 coatings were formed using electrophoretic deposition(EPD) technique in aqueous media. The zeta potentials of different α-Fe2O3 suspensions with different additives were measured as a function of p H to identify the optimum suspension condition for deposition. Electrophoretic depositions of α-Fe2O3 coatings under different applied electric fields and deposition time were studied and the effects of applied voltages and deposition time on deposition rates and thicknesses were investigated. The particle packing densities of the deposits at various applied voltages and deposition time were also analyzed by a scanning electron microscope(SEM). The results show that crack-free α-Fe2O3 coatings with uniform microstructure and good adherence to the nickel substrates are successfully obtained. Electrophoretic deposited α-Fe2O3 coating from aqueous suspension is a feasible, low-cost and environmental friendly method.
基金Projects(40804027,41074085) supported by the National Natural Science Foundation of ChinaProject(09JJ3048) supported by the Natural Science Foundation of Hunan Province,ChinaProject(200805331082) supported by the Research Fund for the Doctoral Program of Higher Education,China
文摘In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position information of measuring point.Utilizing very fast simulated annealing(VFSA) to fit the theoretical electromagnetic force(EMF) and measured EMF could obtain the all-time apparent resistivity of the measuring points in rectangular transmitting loop.The selective cope of initial model of VFSA could be confirmed by taking the late time apparent resistivity of transient electromagnetic method as the prior information.For verifying the correctness,the all-time apparent resistivities of the geoelectric models were calculated by VFSA and dichotomy,respectively.The results indicate that the relative differences of apparent resistivities calculated by these two methods are within 3%.The change of measuring point position has little influence on the tracing pattern of all-time apparent resistivity.The first branch of the curve of all-time apparent resistivity is close to the resistivity of the first layer medium and the last branch is close to the resistivity of the last layer medium,which proves the correctness of the arithmetics proposed.
文摘The art of cricket bowling is complex and arduous owing to the run-up and ball release time energy requirement to achieve speed and variations. Therefore, human bowlers cannot bowl for extended periods and numerous mechanical bowling machines have been built to help batsmen improve their skills during practice sessions. However, most of these existing machines are designed for spherical balls ignoring the distinguishing physical feature of a cricket ball: the raised equatorial seam, which makes it less of a sphere. The bowlers are known to often benefit from this seam in their pursuit to taking the batsmen's wicket by imparting swing, spin and bounce variations along-with other bowling variables. This lack of the seam consideration creates a void between human and mechanical bowling. In this work, we present design and development of an automatic bowling machine termed as ROBOWLER to make mechanical bowling more realistic. This machine ensures ball seam position as well as fulfills other constraints. Ball pitching and seam position accuracy results underscore the suitability of this design to enhance the capabilities of mechanical bowling.