期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于凸优化改进的相机全局位置估计方法 被引量:3
1
作者 谢理想 万刚 +2 位作者 曹雪峰 王庆贺 王龙 《自动化学报》 EI CSCD 北大核心 2018年第3期506-516,共11页
相机全局位置估计作为运动恢复结构算法(Structure from motion,SfM)中的核心内容一直以来都是计算机视觉领域的研究热点.现有相机全局位置估计方法大多对外点敏感,在处理大规模、无序图像集时表现的尤为明显.增量式SfM中的迭代优化步... 相机全局位置估计作为运动恢复结构算法(Structure from motion,SfM)中的核心内容一直以来都是计算机视觉领域的研究热点.现有相机全局位置估计方法大多对外点敏感,在处理大规模、无序图像集时表现的尤为明显.增量式SfM中的迭代优化步骤可以剔除大部分的误匹配从而降低外点对估计结果的影响,而全局式SfM中没有有效地剔除误匹配的策略,估计结果受外点影响较大.针对这种情况,本文提出一种改进的相机全局位置估计方法:首先,结合极线约束提出一种新的对误匹配鲁棒的相对平移方向估计算法,减少相对平移方向估计结果中存在的外点;然后,引入平行刚体理论提出一种新的预处理方法将相机全局位置估计转化为一个适定性问题;最后,在此基础上构造了一个对外点鲁棒的凸优化线性估计模型,对模型解算获取相机位置估计全局最优解,本文方法可以很好地融合到当下的全局式SfM流程中,与现有典型方法的对照实验结果表明:在处理大规模、无序图像时,本文方法能显著提高相机全局位置估计的鲁棒性,并保证估计过程的高效性和估计结果的普遍精度. 展开更多
关键词 日运动恢复结构 全局位置估计 平行刚体 凸优化 极线几何
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部