基于高分辨率的天气预报模式(Weather Research and Forecasting Model,WRF)与海洋环流模式(Hybrid Coordinate Oceanic Circulation Model,HYCOM)耦合数值模拟,对比观测台风最佳路径数据集和PISTON(Propagation of Intraseasonal Tropi...基于高分辨率的天气预报模式(Weather Research and Forecasting Model,WRF)与海洋环流模式(Hybrid Coordinate Oceanic Circulation Model,HYCOM)耦合数值模拟,对比观测台风最佳路径数据集和PISTON(Propagation of Intraseasonal Tropical Oscillations)项目提供的浮标观测数据,通过敏感性试验评估三种微物理参数化方案对1822号超强台风“山竹(Mangkhut)”的路径、强度演变和上层海洋响应的影响.研究表明:海-气耦合模式能在一定程度上模拟台风的移动路径与强度特征,但在台风初期会出现对强度的高估.还能模拟台风造成的海表面温度和盐度空间分布的不对称性.与浮标观测数据相比,海-气耦合模式会略高估海洋冷却与盐度的增加幅度.微物理参数化方案对Mangkhut的模拟有一定影响,Morrison方案对最低平均海平面气压和10 m高度处最大风速的模拟误差较WSM6与Thompson方案低,但该方案会高估海洋表层冷却,因而对Mangkhut成熟到衰减初期的风速模拟偏低. Morrison方案对三小时累积降水量的模拟在Mangkhut前期大于WSM6方案,中后期小于WSM6方案,而与Thompson方案相比,整体相差不大.微物理参数化方案对海洋表面对台风响应的模拟有一定影响,但敏感性有限.海洋表面的热盐变化同时与台风强度和移速有关,海表面温度和海表面盐度的变化幅度都随台风强度的增大而增大,随着台风移速的增大而减小,而台风的强度与移速对于海表响应的影响存在一定的相关性.展开更多
文摘基于高分辨率的天气预报模式(Weather Research and Forecasting Model,WRF)与海洋环流模式(Hybrid Coordinate Oceanic Circulation Model,HYCOM)耦合数值模拟,对比观测台风最佳路径数据集和PISTON(Propagation of Intraseasonal Tropical Oscillations)项目提供的浮标观测数据,通过敏感性试验评估三种微物理参数化方案对1822号超强台风“山竹(Mangkhut)”的路径、强度演变和上层海洋响应的影响.研究表明:海-气耦合模式能在一定程度上模拟台风的移动路径与强度特征,但在台风初期会出现对强度的高估.还能模拟台风造成的海表面温度和盐度空间分布的不对称性.与浮标观测数据相比,海-气耦合模式会略高估海洋冷却与盐度的增加幅度.微物理参数化方案对Mangkhut的模拟有一定影响,Morrison方案对最低平均海平面气压和10 m高度处最大风速的模拟误差较WSM6与Thompson方案低,但该方案会高估海洋表层冷却,因而对Mangkhut成熟到衰减初期的风速模拟偏低. Morrison方案对三小时累积降水量的模拟在Mangkhut前期大于WSM6方案,中后期小于WSM6方案,而与Thompson方案相比,整体相差不大.微物理参数化方案对海洋表面对台风响应的模拟有一定影响,但敏感性有限.海洋表面的热盐变化同时与台风强度和移速有关,海表面温度和海表面盐度的变化幅度都随台风强度的增大而增大,随着台风移速的增大而减小,而台风的强度与移速对于海表响应的影响存在一定的相关性.