期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于相似日筛选与组合深度学习模型的日前电价预测方法
1
作者 艾雨 贾燕冰 韩肖清 《电网技术》 北大核心 2025年第1期242-251,I0088,共11页
准确的日前电价预测是市场运行和政策规划的基础,而市场披露信息是电价预测的重要依据。提出了引入Self-attention机制的CNN-GRU组合深度学习电价预测模型。首先,针对山西电力现货市场交易流程及日前电价形成机制,采用最大互信息系数法... 准确的日前电价预测是市场运行和政策规划的基础,而市场披露信息是电价预测的重要依据。提出了引入Self-attention机制的CNN-GRU组合深度学习电价预测模型。首先,针对山西电力现货市场交易流程及日前电价形成机制,采用最大互信息系数法对市场披露的日前边界条件等信息数据进行特征提取,以确定电价关键影响因素及其权重系数。其次,基于加权灰色关联度的历史相似日筛选方法生成电价预测历史数据集,并挖掘电价及其特征的内部变化规律。然后,基于历史数据集,采用引入Self-attention机制的CNN-GRU模型得到预测电价。最后,通过算例验证了所提预测方法的有效性及准确性。 展开更多
关键词 日前电价预测 边界条件 最大互信息系数 相似日筛选 Self-attention机制
在线阅读 下载PDF
利用多因素小波变换和多变量时间序列模型的日前电价预测 被引量:22
2
作者 谭忠富 张金良 《中国电机工程学报》 EI CSCD 北大核心 2010年第1期103-110,共8页
电力市场中,市场出清电价具有较强的波动性、周期性和随机性,实践证明单一的电价预测模型很难提高预测精度。针对该问题,提出一种基于多因素小波变换和多变量时间序列模型的日前电价预测方法。利用小波变换将历史电价序列和负荷序列分... 电力市场中,市场出清电价具有较强的波动性、周期性和随机性,实践证明单一的电价预测模型很难提高预测精度。针对该问题,提出一种基于多因素小波变换和多变量时间序列模型的日前电价预测方法。利用小波变换将历史电价序列和负荷序列分解和重构成概貌电价、细节电价和概貌负荷、细节负荷。用概貌电价和概貌负荷作变量建立多元时间序列模型,预测未来概貌电价;用单变量时间序列模型预测未来细节电价。将概貌电价和细节电价的预测结果求和作为最终的预测电价。采用上述方法对美国加州电力市场日前电价进行预测,并与对比模型进行了详细的比较分析,结果表明该方法能够提供更准确的预测电价。 展开更多
关键词 小波变换 日前电价预测 电力市场 市场出清电价
在线阅读 下载PDF
考虑时序二维变化的日前市场电价预测模型 被引量:8
3
作者 陈宇聪 白晓清 《电力系统及其自动化学报》 CSCD 北大核心 2024年第7期22-29,共8页
电价预测对电力市场参与者的运营决策及电力系统安全稳定运行关系重大。针对日前市场电价预测问题,本文提出一种考虑时序二维变化的日前市场电价预测模型和方法。首先采用改进的带自适应噪声的完全集成经验模式分解对日前市场电价历史... 电价预测对电力市场参与者的运营决策及电力系统安全稳定运行关系重大。针对日前市场电价预测问题,本文提出一种考虑时序二维变化的日前市场电价预测模型和方法。首先采用改进的带自适应噪声的完全集成经验模式分解对日前市场电价历史数据进行分解,然后对其高、低频子序列分别采用考虑时序二维变化的Ti⁃mesNet和基于统计分析的差分自回归移动平均进行预测,二者结果之和构成日前市场电价的预测值。仿真结果表明,所提方法相较于现有单一或组合模型具有较高的预测精度。 展开更多
关键词 日前市场电价预测 完全集成经验模式分解 差分自回归移动平均 TimesNet 时序二维变化
在线阅读 下载PDF
基于季节分类和RBF自适应权重的并行组合电价预测 被引量:5
4
作者 林琳 刘譞 康慧玲 《电子测量技术》 2020年第12期101-105,共5页
电价预测在世界能源市场建设中具有重要意义,基于季节性分类,提出了一种由自回归移动平均模型(ARIMA)、多层前馈神经网络(BP神经网络)和支持向量回归模型(SVR)组成的并行组合电价预测方法。为了充分利用不同方法的优势,将ARIMA、BP、SV... 电价预测在世界能源市场建设中具有重要意义,基于季节性分类,提出了一种由自回归移动平均模型(ARIMA)、多层前馈神经网络(BP神经网络)和支持向量回归模型(SVR)组成的并行组合电价预测方法。为了充分利用不同方法的优势,将ARIMA、BP、SVR分别应用于日前电价预测中,通过径向基神经网络(RBF)对4个不同季节的3个预测值进行非线性拟合,得到最终的预测结果。所提方法的创新点在于对于每个季节都有特定的预测模型,不同预测方法之间非线性权重值随时间变化而变化,与传统的回归组合预测方法和季节非分类情况相比,其仿真结果表明所提方法具有更好的适应性和更高的预测精度。 展开更多
关键词 日前电价预测 季节分类 自适应权重 并行组合法 RBF拟合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部