通过两种不同方法对太阳高能粒子(Solar Energetic Particles,SEP)通量初始时刻进行研究,一种是数值模拟方法,即数值模拟中取第一颗粒子出现的时刻来确定,另一种是观测背景方法,即通过太阳高能粒子通量随时间变化的背景值与上升值的拐...通过两种不同方法对太阳高能粒子(Solar Energetic Particles,SEP)通量初始时刻进行研究,一种是数值模拟方法,即数值模拟中取第一颗粒子出现的时刻来确定,另一种是观测背景方法,即通过太阳高能粒子通量随时间变化的背景值与上升值的拐点时刻来确定.Kahler(2013)定义的SEP时间尺度TO(the onset time from CME launch to SEP onset,从CME爆发时刻到SEP初始时刻的时间段)、TR(the rise time from onset to half the peak intensity(0.5Ip),从SEP初始时刻的上升时间直到半峰值时刻)、TD(the duration of the SEP intensity above 0.5Ip,SEP强度高于半峰值的持续时间)都与SEP通量初始时刻相关.将CME驱动激波作为源,利用粒子输运方程,对SEP传播进行数值模拟.然后对描述SEP时间尺度的TR、TO的数值模拟值与观测进行对比,发现两者吻合很好,即TR随CME速度和宽度增加而增加.由于TO影响的因素较为复杂,并没有很好的规律性.另外,当源位置经度距离观测者较远的时候,影响时间尺度TR,TO的因素较多.因此,用不同方法确定的SEP通量初始时刻对TR,TO的影响不大;当源位置经度距离观测者较近的时候,观测背景方法下的数值模拟与观测更加符合.展开更多
The north-south component B_z of the Interplanetary Magnetic Field(IMF) and solar wind dynamic pressure P_d are generally treated as the two main factors in the solar wind that determine the geometry of the magnetosph...The north-south component B_z of the Interplanetary Magnetic Field(IMF) and solar wind dynamic pressure P_d are generally treated as the two main factors in the solar wind that determine the geometry of the magnetosphere.By using the 3D global MHD simulations,we investigate the effect of the Interplanetary Electric Field(IEF) on the size and shape of magnetopause quantitatively. Our numerical experiments confirm that the geometry of the magnetopause are mainly determined by P_d and B_z,as expected.However,the dawn-dusk IEFs have great impact on the magnetopause erosion because of the magnetic reconnection,thus affecting the size and shape of the magnetopause.Higher solar wind speed with the same B_z will lead to bigger dawn-dusk IEFs,which means the higher reconnection rate,and then results in more magnetic flux removal from the dayside. Consequently,the dayside magnetopause moves inward and flank magnetopause moves outward.展开更多
Great progress has been made in the research of solar corona and interplanetary physics by the Chinese scientists during the past two years(2014—2016).Nearly 100 papers were published in this area.In this report,we w...Great progress has been made in the research of solar corona and interplanetary physics by the Chinese scientists during the past two years(2014—2016).Nearly 100 papers were published in this area.In this report,we will give a brief review to these progresses.The investigations include:solar corona,solar wind and turbulence,superhalo electron and energetic particle in the inner heliosphere,solar flares and radio bursts,Coronal Mass Ejections(CMEs) and their interplanetary counterparts,Magnetohydrodynamic(MHD) numerical modeling,CME/shock arrival time prediction,magnetic reconnection,solar variability and its impact on climate.These achievements help us to better understand the evolution of solar activities,solar eruptions,their propagations in the heliosphere,and potential geoeffectiveness.They were achieved by the Chinese solar and space scientists independently or via international collaborations.展开更多
文摘通过两种不同方法对太阳高能粒子(Solar Energetic Particles,SEP)通量初始时刻进行研究,一种是数值模拟方法,即数值模拟中取第一颗粒子出现的时刻来确定,另一种是观测背景方法,即通过太阳高能粒子通量随时间变化的背景值与上升值的拐点时刻来确定.Kahler(2013)定义的SEP时间尺度TO(the onset time from CME launch to SEP onset,从CME爆发时刻到SEP初始时刻的时间段)、TR(the rise time from onset to half the peak intensity(0.5Ip),从SEP初始时刻的上升时间直到半峰值时刻)、TD(the duration of the SEP intensity above 0.5Ip,SEP强度高于半峰值的持续时间)都与SEP通量初始时刻相关.将CME驱动激波作为源,利用粒子输运方程,对SEP传播进行数值模拟.然后对描述SEP时间尺度的TR、TO的数值模拟值与观测进行对比,发现两者吻合很好,即TR随CME速度和宽度增加而增加.由于TO影响的因素较为复杂,并没有很好的规律性.另外,当源位置经度距离观测者较远的时候,影响时间尺度TR,TO的因素较多.因此,用不同方法确定的SEP通量初始时刻对TR,TO的影响不大;当源位置经度距离观测者较近的时候,观测背景方法下的数值模拟与观测更加符合.
基金Supported by the National Natural Science Foundation of China(40674082,40974106,40921063,40831060)the Specialized Research Fund for State Key Laboratories
文摘The north-south component B_z of the Interplanetary Magnetic Field(IMF) and solar wind dynamic pressure P_d are generally treated as the two main factors in the solar wind that determine the geometry of the magnetosphere.By using the 3D global MHD simulations,we investigate the effect of the Interplanetary Electric Field(IEF) on the size and shape of magnetopause quantitatively. Our numerical experiments confirm that the geometry of the magnetopause are mainly determined by P_d and B_z,as expected.However,the dawn-dusk IEFs have great impact on the magnetopause erosion because of the magnetic reconnection,thus affecting the size and shape of the magnetopause.Higher solar wind speed with the same B_z will lead to bigger dawn-dusk IEFs,which means the higher reconnection rate,and then results in more magnetic flux removal from the dayside. Consequently,the dayside magnetopause moves inward and flank magnetopause moves outward.
文摘Great progress has been made in the research of solar corona and interplanetary physics by the Chinese scientists during the past two years(2014—2016).Nearly 100 papers were published in this area.In this report,we will give a brief review to these progresses.The investigations include:solar corona,solar wind and turbulence,superhalo electron and energetic particle in the inner heliosphere,solar flares and radio bursts,Coronal Mass Ejections(CMEs) and their interplanetary counterparts,Magnetohydrodynamic(MHD) numerical modeling,CME/shock arrival time prediction,magnetic reconnection,solar variability and its impact on climate.These achievements help us to better understand the evolution of solar activities,solar eruptions,their propagations in the heliosphere,and potential geoeffectiveness.They were achieved by the Chinese solar and space scientists independently or via international collaborations.