期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
IGMM结合区间统计的机械故障预警方法研究
1
作者 苏方健 刘文才 马波 《机械设计与制造》 北大核心 2024年第1期154-158,共5页
针对机械工况恶劣、结构复杂,单特征门限报警的故障预警方法对其预警常出现误、漏报警事件的现状,提出一种无限高斯混合模型(IGMM,Infinite Gaussian Mixture Model)结合区间统计的机械故障预警方法。首先,将机械振动信号映射为高维特... 针对机械工况恶劣、结构复杂,单特征门限报警的故障预警方法对其预警常出现误、漏报警事件的现状,提出一种无限高斯混合模型(IGMM,Infinite Gaussian Mixture Model)结合区间统计的机械故障预警方法。首先,将机械振动信号映射为高维特征空间,对其所在空间进行区间划分。然后,利用IGMM估计出机械健康状态下高维特征空间在各区间频数的分布;利用累计计数方法统计出机械在实时状态下高维特征空间在各区间频数的分布。最后,对以上两个频数分布计算距离并将其与自学习得出的预警阈值作比较,实现故障预警。验证结果表明,提出方法的预警准确率较高且时效性较好。 展开更多
关键词 故障预警 无限高斯混合模型 机械设备
在线阅读 下载PDF
非参数贝叶斯分类字典学习的MRI重建方法
2
作者 朱路 曹赛男 +2 位作者 刘松 刘媛媛 李康康 《计算机工程与设计》 北大核心 2021年第4期1065-1071,共7页
为提高磁共振图像的重构质量,提出一种基于非参数贝叶斯分类字典学习的重建方法。通过差分变换,在梯度域中利用无限高斯混合模型将图像块自动聚类,对具有相似结构的图像块进行分类训练字典。采用非参数贝叶斯字典学习方法训练字典,克服... 为提高磁共振图像的重构质量,提出一种基于非参数贝叶斯分类字典学习的重建方法。通过差分变换,在梯度域中利用无限高斯混合模型将图像块自动聚类,对具有相似结构的图像块进行分类训练字典。采用非参数贝叶斯字典学习方法训练字典,克服传统字典学习对参数选择的依赖性。实验结果表明,与目前几种典型的磁共振图像重建方法相比,该方法的峰值信噪比平均提高2.9 dB;在同一噪声水平下,该方法抗噪性能更强,重构质量更优。 展开更多
关键词 差分变换 非参数贝叶斯 无限高斯混合模型 分类字典学习 参数选择
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部