【目的】分析全球小麦Triticum aestivum生物育种研究进展,揭示其研究主题、核心知识元素和前沿热点,为小麦育种的理论研究和学科发展提供参考。【方法】从Web of Science核心合集数据库检索2013—2024年全球小麦生物育种研究领域发表...【目的】分析全球小麦Triticum aestivum生物育种研究进展,揭示其研究主题、核心知识元素和前沿热点,为小麦育种的理论研究和学科发展提供参考。【方法】从Web of Science核心合集数据库检索2013—2024年全球小麦生物育种研究领域发表的文献,利用文献计量学方法分析该领域的发文量、学术影响力、发文主体等,利用VOSviewer生成国家合作网络和关键词共现网络,利用机器学习算法潜在狄利克雷分配(LDA)分析文献摘要,建立语言模型,识别研究主题。【结果】2013年以来全球小麦生物育种研究的科研产出大幅增加,共发表文献16 151篇。中国是全球在该领域发文最多的国家,其次是美国。关键词共现图谱显示,产量、数量性状位点、全基因组关联分析、干旱胁迫、基因表达、单核苷酸多态性是小麦生物育种研究的热点,而规律间隔成簇短回文重复序列(CRISPR)、基因组编辑、高通量表型分析、无人机、机器学习等是近年来兴起的研究领域。LDA分析结果显示:小麦生物育种可大致分为5个研究领域,包括遗传定位、基因组和育种、生物逆境、非生物逆境和产量形成。其中,小麦锈病、数量性状位点定位、面粉品质、干旱、基因组等是高度关注的研究主题。【结论】未来小麦生物育种需要充分利用包括组学、自动表型、人工智能、基因编辑、基因组育种等现代生物技术和信息技术,发掘和利用重要基因,开展智慧育种。展开更多
面向社交网络的情感社区检测,可应用于公共健康、舆情监测等领域.以新浪微博为平台建立一种情感社区检测框架,首先融合微博情感表情特征和情感词典,提出基于朴素贝叶斯算法的半词典半表情(naive Bayes based semi-lexicon and semi-emoj...面向社交网络的情感社区检测,可应用于公共健康、舆情监测等领域.以新浪微博为平台建立一种情感社区检测框架,首先融合微博情感表情特征和情感词典,提出基于朴素贝叶斯算法的半词典半表情(naive Bayes based semi-lexicon and semi-emoji,SL-SE-NB)分类模型以实现对文本的情感极性预测;提出一种基于潜在狄利克雷分配(latent Dirichlet allocation,LDA)话题模型的用户-超话题-关键词(user-topic-keywords,UTK)模型抽取用户话题;基于标签传播算法(label propagation algorithm,LPA)并加入话题概念,提出基于种子集与最小边介数的标签传播情感社区发现算法(label propagation algorithm based seeds and min-edge betweenness,SMB-LPA).最后通过实验验证了所提出算法的有效性和高效性.展开更多
文摘【目的】分析全球小麦Triticum aestivum生物育种研究进展,揭示其研究主题、核心知识元素和前沿热点,为小麦育种的理论研究和学科发展提供参考。【方法】从Web of Science核心合集数据库检索2013—2024年全球小麦生物育种研究领域发表的文献,利用文献计量学方法分析该领域的发文量、学术影响力、发文主体等,利用VOSviewer生成国家合作网络和关键词共现网络,利用机器学习算法潜在狄利克雷分配(LDA)分析文献摘要,建立语言模型,识别研究主题。【结果】2013年以来全球小麦生物育种研究的科研产出大幅增加,共发表文献16 151篇。中国是全球在该领域发文最多的国家,其次是美国。关键词共现图谱显示,产量、数量性状位点、全基因组关联分析、干旱胁迫、基因表达、单核苷酸多态性是小麦生物育种研究的热点,而规律间隔成簇短回文重复序列(CRISPR)、基因组编辑、高通量表型分析、无人机、机器学习等是近年来兴起的研究领域。LDA分析结果显示:小麦生物育种可大致分为5个研究领域,包括遗传定位、基因组和育种、生物逆境、非生物逆境和产量形成。其中,小麦锈病、数量性状位点定位、面粉品质、干旱、基因组等是高度关注的研究主题。【结论】未来小麦生物育种需要充分利用包括组学、自动表型、人工智能、基因编辑、基因组育种等现代生物技术和信息技术,发掘和利用重要基因,开展智慧育种。
文摘面向社交网络的情感社区检测,可应用于公共健康、舆情监测等领域.以新浪微博为平台建立一种情感社区检测框架,首先融合微博情感表情特征和情感词典,提出基于朴素贝叶斯算法的半词典半表情(naive Bayes based semi-lexicon and semi-emoji,SL-SE-NB)分类模型以实现对文本的情感极性预测;提出一种基于潜在狄利克雷分配(latent Dirichlet allocation,LDA)话题模型的用户-超话题-关键词(user-topic-keywords,UTK)模型抽取用户话题;基于标签传播算法(label propagation algorithm,LPA)并加入话题概念,提出基于种子集与最小边介数的标签传播情感社区发现算法(label propagation algorithm based seeds and min-edge betweenness,SMB-LPA).最后通过实验验证了所提出算法的有效性和高效性.