半球缺的排列方式、数量及间距直接影响半球缺无阀泵的泵送性能。通过对泵理论流量的推导,揭示了半球缺无阀泵具有泵送流体性能的机理;通过对纵向及横向排列半球缺数量及间距的变化对流场及仿真流量影响的研究,发现半球缺排列方式、间...半球缺的排列方式、数量及间距直接影响半球缺无阀泵的泵送性能。通过对泵理论流量的推导,揭示了半球缺无阀泵具有泵送流体性能的机理;通过对纵向及横向排列半球缺数量及间距的变化对流场及仿真流量影响的研究,发现半球缺排列方式、间距及数量的改变其实质是改变了半球缺的反正向流阻差这一重要现象;探明了减小横向间距、适当增加纵向间距及适当间距范围内增加半球缺的数量均能提高泵流量的重要规律;最后,通过泵流量试验验证了仿真结论的正确性:以安装有4个纵向及横向等间距10 mm排列半球缺的泵进行试验,分别得到了48.29 m L/min、50.29 m L/min的试验流量,与仿真流量的偏差分别为34.6%、34.0%,进一步验证了相同条件下增加横向排列半球缺数量能获得更好的泵送效果。展开更多
文摘半球缺的排列方式、数量及间距直接影响半球缺无阀泵的泵送性能。通过对泵理论流量的推导,揭示了半球缺无阀泵具有泵送流体性能的机理;通过对纵向及横向排列半球缺数量及间距的变化对流场及仿真流量影响的研究,发现半球缺排列方式、间距及数量的改变其实质是改变了半球缺的反正向流阻差这一重要现象;探明了减小横向间距、适当增加纵向间距及适当间距范围内增加半球缺的数量均能提高泵流量的重要规律;最后,通过泵流量试验验证了仿真结论的正确性:以安装有4个纵向及横向等间距10 mm排列半球缺的泵进行试验,分别得到了48.29 m L/min、50.29 m L/min的试验流量,与仿真流量的偏差分别为34.6%、34.0%,进一步验证了相同条件下增加横向排列半球缺数量能获得更好的泵送效果。