Inherent flaws in the extended Kalman filter(EKF) algorithm were pointed out and unscented Kalman filter(UKF) was put forward as an alternative.Furthermore,a novel adaptive unscented Kalman filter(AUKF) based on innov...Inherent flaws in the extended Kalman filter(EKF) algorithm were pointed out and unscented Kalman filter(UKF) was put forward as an alternative.Furthermore,a novel adaptive unscented Kalman filter(AUKF) based on innovation was developed.The three data-fusing approaches were analyzed and evaluated in a mathematically rigorous way.Field experiments conducted in lake further demonstrate that AUKF reduces the position error approximately by 65% compared with EKF and by 35% UKF and improves the robust performance.展开更多
New sigma point filtering algorithms, including the unscented Kalman filter (UKF) and the divided difference filter (DDF), are designed to solve the nonlinear filtering problem under the condition of correlated no...New sigma point filtering algorithms, including the unscented Kalman filter (UKF) and the divided difference filter (DDF), are designed to solve the nonlinear filtering problem under the condition of correlated noises. Based on the minimum mean square error estimation theory, the nonlinear optimal predictive and correction recursive formulas under the hypothesis that the input noise is correlated with the measurement noise are derived and can be described in a unified framework. Then, UKF and DDF with correlated noises are proposed on the basis of approximation of the posterior mean and covariance in the unified framework by using unscented transformation and second order Stirling's interpolation. The proposed UKF and DDF with correlated noises break through the limitation that input noise and measurement noise must be assumed to be uneorrelated in standard UKF and DDF. Two simulation examples show the effectiveness and feasibility of new algorithms for dealing with nonlinear filtering issue with correlated noises.展开更多
基金Projects(2009AA093302,2002AA401003)supported by the National High-Tech Research and Development Program of ChinaProject(YYYJ-0917)supported by the Knowledge Innovation of Chinese Academy of Sciences+1 种基金Projects(61273334,61233013)supported by the National Natural Science Foundation of ChinaProject(2011010025-401)supported by the Natural Science Foundation of Liaoning Province,China
文摘Inherent flaws in the extended Kalman filter(EKF) algorithm were pointed out and unscented Kalman filter(UKF) was put forward as an alternative.Furthermore,a novel adaptive unscented Kalman filter(AUKF) based on innovation was developed.The three data-fusing approaches were analyzed and evaluated in a mathematically rigorous way.Field experiments conducted in lake further demonstrate that AUKF reduces the position error approximately by 65% compared with EKF and by 35% UKF and improves the robust performance.
基金Projects(61135001, 61075029, 61074155) supported by the National Natural Science Foundation of ChinaProject(20110491690) supported by the Postdocteral Science Foundation of China
文摘New sigma point filtering algorithms, including the unscented Kalman filter (UKF) and the divided difference filter (DDF), are designed to solve the nonlinear filtering problem under the condition of correlated noises. Based on the minimum mean square error estimation theory, the nonlinear optimal predictive and correction recursive formulas under the hypothesis that the input noise is correlated with the measurement noise are derived and can be described in a unified framework. Then, UKF and DDF with correlated noises are proposed on the basis of approximation of the posterior mean and covariance in the unified framework by using unscented transformation and second order Stirling's interpolation. The proposed UKF and DDF with correlated noises break through the limitation that input noise and measurement noise must be assumed to be uneorrelated in standard UKF and DDF. Two simulation examples show the effectiveness and feasibility of new algorithms for dealing with nonlinear filtering issue with correlated noises.