微波无线输能(microwave wireless power transmission,MPT)技术应用于不易获取直流电能的场合,是研制太阳能卫星、近空间飞行器的关键技术,也可应用于无线传感器网络节点供能及环境低微微波能量的回收.比较了微带线型和共面带状线型2...微波无线输能(microwave wireless power transmission,MPT)技术应用于不易获取直流电能的场合,是研制太阳能卫星、近空间飞行器的关键技术,也可应用于无线传感器网络节点供能及环境低微微波能量的回收.比较了微带线型和共面带状线型2种典型整流天线的单元和阵列性能,提出了对接收天线和整流电路的要求;以获得最大微波波束捕获效率为目标,分析了发射天线拓扑结构及高斯削尖口径电平分布.在研究以上关键技术的基础上设计了一套C波段微波输能系统,该系统从发射端到接收端的直流-直流效率为35%.最后指出了微波无线输能技术存在的问题和未来发展方向.展开更多
To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to tr...To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to transmit signals in a time slot when it forwards the primary signal.In order to address this limitation,a novel cooperative spectrum sharing scheme is proposed,where the secondary transmission is multiplexed with both the primary transmission and the relay transmission.Specifically,the process of transmission is on a three-phase time-switching relaying basis.In the first phase,a cognitive sensor node SU1 scavenges energy from the primary transmission.In the second phase,another sensor node SU2 and primary transmitter simultaneously transmit signals to the SU1.In the third phase,the node SU1 can assist the primary transmission to acquire the opportunity of spectrum sharing.Joint decoding and interference cancellation technique is adopted at the receivers to retrieve the desired signals.We further derive the closed-form expressions for the outage probabilities of both the primary and secondary systems.Moreover,we address optimization of energy harvesting duration and power allocation coefficient strategy under performance criteria.An effective algorithm is then presented to solve the optimization problem.Simulation results demonstrate that with the optimized solutions,the sensor nodes with the proposed cooperative spectrum sharing scheme can utilize the spectrum in a more efficient manner without deteriorating the performance of the primary transmission,as compared with the existing one-directional scheme in the literature.展开更多
The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the contro...The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the controller and the controller to the actor sides in the WNCS, which were used to reduce data transmission, furthermore, to decrease the network collision and node energy consumption. Under the consideration of time-varying delays and signal transmission deadbands, the model for the WNCS was presented. A novel Lyapunov functional which took full advantages of the network factors was exploited. Meanwhile, new stability analysis and stabilization conditions for the WNCS were proposed, which described the relationship of the delay bounds, the transmission deadband bounds and the system stability. Two examples were used to demonstrate the effectiveness of the proposed methods. The results show that the proposed approach can guarantee asymptotical stability of the system and reduce the data transmission effectively.展开更多
Recent researches show that inter-session network coding could decrease the number of packets transmission and achieve higher throughput in wireless network compared with traditional forwarding mechanism. In most exis...Recent researches show that inter-session network coding could decrease the number of packets transmission and achieve higher throughput in wireless network compared with traditional forwarding mechanism. In most existing relay mechanisms based on inter-session network such as COPE, relay node demands to collect the messages from its neighbor nodes to get notice of which packets already overheard by them so as to determine whether there exists coding opportunity between or among forwarding packets. However, transmission overhead of this message collection and computing cost of opportunity determination will degrade the performance of these mechanisms. It is observed that coding opportunity at relay node is much more related with the local topology, and the opportunity of encoding three or more packets together is far less than that of encoding two packets together in wireless network with general density. Based on this, a new coding-aware routing mechanism, named TCAR, is proposed. TCAR ignores the oppommity of encoding three or more than three packets together. Each relay node maintains an encoding mapping table being established according to the result of its local topology detection, which can be used to calculate the path cost during routing setup phase, and determine that which two packets can be encoded together during the packets forwarding phase. In TCAR, instead of periodic messages collection, each relay nodes just need once local topology detection, and the encoding determination is much simpler than that of the former mechanisms. Simulation results show that compared with typical inter-session network coding mechanisms COPE and COPE-based routing, TCAR achieves 12% and 7% throughput gains, and keeps the minimum end to end delay.展开更多
The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, re...The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.展开更多
文摘微波无线输能(microwave wireless power transmission,MPT)技术应用于不易获取直流电能的场合,是研制太阳能卫星、近空间飞行器的关键技术,也可应用于无线传感器网络节点供能及环境低微微波能量的回收.比较了微带线型和共面带状线型2种典型整流天线的单元和阵列性能,提出了对接收天线和整流电路的要求;以获得最大微波波束捕获效率为目标,分析了发射天线拓扑结构及高斯削尖口径电平分布.在研究以上关键技术的基础上设计了一套C波段微波输能系统,该系统从发射端到接收端的直流-直流效率为35%.最后指出了微波无线输能技术存在的问题和未来发展方向.
基金Project (61201086) supported by the National Natural Science Foundation of ChinaProject (201506375060) supported by the China Scholarship Council+2 种基金Project (2013B090500007) supported by Guangdong Provincial Science and Technology Project,ChinaProject (2014509102205) supported by the Dongguan Municipal Project on the Integration of Industry,Education and Research,ChinaProject (2017GK5019) supported by 2017 Hunan-Tech&Innovation Investment Project,China
文摘To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to transmit signals in a time slot when it forwards the primary signal.In order to address this limitation,a novel cooperative spectrum sharing scheme is proposed,where the secondary transmission is multiplexed with both the primary transmission and the relay transmission.Specifically,the process of transmission is on a three-phase time-switching relaying basis.In the first phase,a cognitive sensor node SU1 scavenges energy from the primary transmission.In the second phase,another sensor node SU2 and primary transmitter simultaneously transmit signals to the SU1.In the third phase,the node SU1 can assist the primary transmission to acquire the opportunity of spectrum sharing.Joint decoding and interference cancellation technique is adopted at the receivers to retrieve the desired signals.We further derive the closed-form expressions for the outage probabilities of both the primary and secondary systems.Moreover,we address optimization of energy harvesting duration and power allocation coefficient strategy under performance criteria.An effective algorithm is then presented to solve the optimization problem.Simulation results demonstrate that with the optimized solutions,the sensor nodes with the proposed cooperative spectrum sharing scheme can utilize the spectrum in a more efficient manner without deteriorating the performance of the primary transmission,as compared with the existing one-directional scheme in the literature.
基金Project(61104106)supported by the National Natural Science Foundation of ChinaProject(201202156)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(LJQ2012100)supported by the Program for Liaoning Excellent Talents in University(LNET),China
文摘The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the controller and the controller to the actor sides in the WNCS, which were used to reduce data transmission, furthermore, to decrease the network collision and node energy consumption. Under the consideration of time-varying delays and signal transmission deadbands, the model for the WNCS was presented. A novel Lyapunov functional which took full advantages of the network factors was exploited. Meanwhile, new stability analysis and stabilization conditions for the WNCS were proposed, which described the relationship of the delay bounds, the transmission deadband bounds and the system stability. Two examples were used to demonstrate the effectiveness of the proposed methods. The results show that the proposed approach can guarantee asymptotical stability of the system and reduce the data transmission effectively.
基金Projects(61173169,61106036)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0798)Program for New Century Excellent Talents in University,China
文摘Recent researches show that inter-session network coding could decrease the number of packets transmission and achieve higher throughput in wireless network compared with traditional forwarding mechanism. In most existing relay mechanisms based on inter-session network such as COPE, relay node demands to collect the messages from its neighbor nodes to get notice of which packets already overheard by them so as to determine whether there exists coding opportunity between or among forwarding packets. However, transmission overhead of this message collection and computing cost of opportunity determination will degrade the performance of these mechanisms. It is observed that coding opportunity at relay node is much more related with the local topology, and the opportunity of encoding three or more packets together is far less than that of encoding two packets together in wireless network with general density. Based on this, a new coding-aware routing mechanism, named TCAR, is proposed. TCAR ignores the oppommity of encoding three or more than three packets together. Each relay node maintains an encoding mapping table being established according to the result of its local topology detection, which can be used to calculate the path cost during routing setup phase, and determine that which two packets can be encoded together during the packets forwarding phase. In TCAR, instead of periodic messages collection, each relay nodes just need once local topology detection, and the encoding determination is much simpler than that of the former mechanisms. Simulation results show that compared with typical inter-session network coding mechanisms COPE and COPE-based routing, TCAR achieves 12% and 7% throughput gains, and keeps the minimum end to end delay.
基金Project(61104088)supported by the National Natural Science Foundation of ChinaProject(12C0741)supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.