无线供能移动边缘计算(wireless powered-mobile edge computing,WP-MEC)集成了移动边缘计算和无线功率传输技术,旨在解决移动设备计算能力不足和持续能源供应问题。然而由于WP-MEC中不同边缘服务器供电能力和计算能力不同、移动设备需...无线供能移动边缘计算(wireless powered-mobile edge computing,WP-MEC)集成了移动边缘计算和无线功率传输技术,旨在解决移动设备计算能力不足和持续能源供应问题。然而由于WP-MEC中不同边缘服务器供电能力和计算能力不同、移动设备需执行任务的延迟忍耐时间异构,以及移动设备与服务器之间时变的无线信道给系统时间资源分配和任务处理带来了巨大挑战。基于此,从WP-MEC网络的异构服务器选择、计算卸载和资源分配联合优化的角度开展研究,为提高系统有效计算率,提出了基于延迟敏感性任务加权平均的坐标下降(joint optimization scheduling algorithm with weighted average of delay-sensitive tasks and coordinate descent,WADT_CD)联合调度算法。首先,综合考虑时变无线信道增益、异构任务延迟、异构边缘服务器的发射功率和计算能力,设计基于延迟敏感性任务加权平均(scheme of weighted average of delay-sensitive tasks,WADT)的异构服务器选择策略。其次,考虑WP-MEC网络模型特性,设计基于一维时间变量二分搜索的坐标下降(method of coordinate descent,CD)算法解决移动设备卸载决策和时间资源分配问题。最后,通过仿真实验与多种算法进行对比,验证了所提方法的优越性,并且分析了在不同规模边缘设备、异构任务比例时所提算法的有效性。展开更多
无线供能下的移动边缘计算(Wirelessly Powered Mobile Edge Computing,WP-MEC)集成了WPT(Wireless Power Transfer,WPT)和移动边缘计算技术,解决节点的能量和算力受限问题。针对WP-MEC,考虑计算节点可将计算任务卸载给空闲节点的场景,...无线供能下的移动边缘计算(Wirelessly Powered Mobile Edge Computing,WP-MEC)集成了WPT(Wireless Power Transfer,WPT)和移动边缘计算技术,解决节点的能量和算力受限问题。针对WP-MEC,考虑计算节点可将计算任务卸载给空闲节点的场景,通过联合优化WPT时长、卸载决策和节点计算频率,最大化节点的总计算速率(Sum Computing Rate,SCR)。首先将其建模为一个非凸问题,为了有效地求解,将其分解为给定时间分配下优化卸载决策和节点计算频率的子问题和优化时间分配的主问题。最后,设计了一个基于深度强化学习的方案,采用一个深度神经网络来输出近似最优的时间分配,并将给定时间分配下的子问题转化为凸问题进行高效求解。该方案具有较低的计算复杂度,实现了接近最大的SCR。展开更多
移动边缘计算(mobile edge computing,MEC)近年来成为解决无线体域网(wireless body area network,WBAN)计算资源匮乏的热门方法之一,但在现有的研究工作中,并没有将患者身边的计算资源充分利用起来,容易造成网络的拥堵。针对这种情况,...移动边缘计算(mobile edge computing,MEC)近年来成为解决无线体域网(wireless body area network,WBAN)计算资源匮乏的热门方法之一,但在现有的研究工作中,并没有将患者身边的计算资源充分利用起来,容易造成网络的拥堵。针对这种情况,提出了一种联合蜂窝、WiFi网络与设备到设备(device to device,D2D)通信的高效任务卸载方案,充分利用了WBAN应用场景中的多种计算资源,有效减少了蜂窝网络的负载,提高了系统的可靠性。设计了一种低复杂度的遗传算法,在同时考虑患者时延、能耗以及经济开销条件下,得到系统的最小卸载总成本。实验仿真结果表明,相比于随机卸载、蜂窝卸载、无WiFi卸载、无D2D卸载,该方案可以更有效降低系统总成本,为患者提供更高的服务质量。展开更多
为解决5G移动通信系统中移动用户计算能力不足、能量消耗多、无线资源缺乏等问题,本文构建一种基于无线携能通信(Simultaneous Wireless Information and Power Transfer, SWIPT)的多用户设备间(Device to Device, D2D)通信辅助移动边...为解决5G移动通信系统中移动用户计算能力不足、能量消耗多、无线资源缺乏等问题,本文构建一种基于无线携能通信(Simultaneous Wireless Information and Power Transfer, SWIPT)的多用户设备间(Device to Device, D2D)通信辅助移动边缘计算(Mobile Edge Computation, MEC)系统模型,提出一种D2D-MEC联合卸载策略。该策略以系统中请求用户总能耗最小化为目标,采用二进制卸载模式和功率分流模式对请求用户进行任务卸载和能量收集。针对能耗最小化问题为非线性混合整数规划问题,根据整数变量和实数变量将原问题解耦为功率分配和计算任务卸载两个独立子问题,并分别采用Dinkelbach方法和匈牙利算法求出两个子问题的最优解。仿真实验结果表明,本文所提策略优于传统的D2D卸载策略和MEC卸载策略,有效降低了请求用户的总能耗,提高了任务执行效率。展开更多
文摘无线供能移动边缘计算(wireless powered-mobile edge computing,WP-MEC)集成了移动边缘计算和无线功率传输技术,旨在解决移动设备计算能力不足和持续能源供应问题。然而由于WP-MEC中不同边缘服务器供电能力和计算能力不同、移动设备需执行任务的延迟忍耐时间异构,以及移动设备与服务器之间时变的无线信道给系统时间资源分配和任务处理带来了巨大挑战。基于此,从WP-MEC网络的异构服务器选择、计算卸载和资源分配联合优化的角度开展研究,为提高系统有效计算率,提出了基于延迟敏感性任务加权平均的坐标下降(joint optimization scheduling algorithm with weighted average of delay-sensitive tasks and coordinate descent,WADT_CD)联合调度算法。首先,综合考虑时变无线信道增益、异构任务延迟、异构边缘服务器的发射功率和计算能力,设计基于延迟敏感性任务加权平均(scheme of weighted average of delay-sensitive tasks,WADT)的异构服务器选择策略。其次,考虑WP-MEC网络模型特性,设计基于一维时间变量二分搜索的坐标下降(method of coordinate descent,CD)算法解决移动设备卸载决策和时间资源分配问题。最后,通过仿真实验与多种算法进行对比,验证了所提方法的优越性,并且分析了在不同规模边缘设备、异构任务比例时所提算法的有效性。
文摘无线供能下的移动边缘计算(Wirelessly Powered Mobile Edge Computing,WP-MEC)集成了WPT(Wireless Power Transfer,WPT)和移动边缘计算技术,解决节点的能量和算力受限问题。针对WP-MEC,考虑计算节点可将计算任务卸载给空闲节点的场景,通过联合优化WPT时长、卸载决策和节点计算频率,最大化节点的总计算速率(Sum Computing Rate,SCR)。首先将其建模为一个非凸问题,为了有效地求解,将其分解为给定时间分配下优化卸载决策和节点计算频率的子问题和优化时间分配的主问题。最后,设计了一个基于深度强化学习的方案,采用一个深度神经网络来输出近似最优的时间分配,并将给定时间分配下的子问题转化为凸问题进行高效求解。该方案具有较低的计算复杂度,实现了接近最大的SCR。
文摘移动边缘计算(mobile edge computing,MEC)近年来成为解决无线体域网(wireless body area network,WBAN)计算资源匮乏的热门方法之一,但在现有的研究工作中,并没有将患者身边的计算资源充分利用起来,容易造成网络的拥堵。针对这种情况,提出了一种联合蜂窝、WiFi网络与设备到设备(device to device,D2D)通信的高效任务卸载方案,充分利用了WBAN应用场景中的多种计算资源,有效减少了蜂窝网络的负载,提高了系统的可靠性。设计了一种低复杂度的遗传算法,在同时考虑患者时延、能耗以及经济开销条件下,得到系统的最小卸载总成本。实验仿真结果表明,相比于随机卸载、蜂窝卸载、无WiFi卸载、无D2D卸载,该方案可以更有效降低系统总成本,为患者提供更高的服务质量。
文摘为解决5G移动通信系统中移动用户计算能力不足、能量消耗多、无线资源缺乏等问题,本文构建一种基于无线携能通信(Simultaneous Wireless Information and Power Transfer, SWIPT)的多用户设备间(Device to Device, D2D)通信辅助移动边缘计算(Mobile Edge Computation, MEC)系统模型,提出一种D2D-MEC联合卸载策略。该策略以系统中请求用户总能耗最小化为目标,采用二进制卸载模式和功率分流模式对请求用户进行任务卸载和能量收集。针对能耗最小化问题为非线性混合整数规划问题,根据整数变量和实数变量将原问题解耦为功率分配和计算任务卸载两个独立子问题,并分别采用Dinkelbach方法和匈牙利算法求出两个子问题的最优解。仿真实验结果表明,本文所提策略优于传统的D2D卸载策略和MEC卸载策略,有效降低了请求用户的总能耗,提高了任务执行效率。