无线供电通信网络(Wireless-powered Communication Network,WPCN)不仅可以实现远程无线充电而且能够提供无线通信服务,因此受到了学术界和工业界的广泛关注。然而,低效率的能量收集和信息传输会限制WPCN的性能,并且在WPCN中的双重远近...无线供电通信网络(Wireless-powered Communication Network,WPCN)不仅可以实现远程无线充电而且能够提供无线通信服务,因此受到了学术界和工业界的广泛关注。然而,低效率的能量收集和信息传输会限制WPCN的性能,并且在WPCN中的双重远近效应会导致物联网设备收集的能量与消耗的能量之间的不平衡。为了解决这些问题,提出基于能量回收的主动智能反射面(Intelligent Reflecting Surface,IRS)辅助WPCN波束成形算法,其中物联网设备既能从功率站端收集能量,还能从其他物联网设备的上行信息传输中回收能量。考虑能量收集、吞吐量、时间分配,以及功率站和主动IRS的最大功率等约束,基于能量回收机制,建立了系统总吞吐量最大化的资源分配模型;然后,提出一种基于内层近似和双线性变换的交替优化算法进行求解。仿真结果表明,在相应的参数配置下,能量回收机制的应用能够提升约8.13%的吞吐量,而主动IRS的应用能够提升约61.1%的吞吐量。展开更多
现有的无线供电通信网络(Wireless powered communication networks,WPCN)只考虑在下行链路中进行能量传输,没有考虑信息传输的需求。实际上,在很多应用场景中需要考虑利用下行链路传输信息。如何制定发送策略来权衡各用户上行传输速率...现有的无线供电通信网络(Wireless powered communication networks,WPCN)只考虑在下行链路中进行能量传输,没有考虑信息传输的需求。实际上,在很多应用场景中需要考虑利用下行链路传输信息。如何制定发送策略来权衡各用户上行传输速率的公平性与最大化是WPCN中的研究热点。本文提出一种新的在强干扰蜂窝小区中进行能量与信息传输的设计方案,将下行无线信息与能量的同时传输(Simultaneous wireless information and power transfer,SWIPT)与无线供电通信网络相结合,实现基站与用户之间的下行能量传输与上下行双向信息传输。该方案通过上行功率分配、下行时间分配与波束成形以实现上下行最小传输速率的最大化,从而实现各用户上下行信息传输的性能与公平性的平衡。仿真结果表明,与传统的传输方式相比,本方案显著提高用户的最小传输速率。展开更多
文摘无线供电通信网络(Wireless-powered Communication Network,WPCN)不仅可以实现远程无线充电而且能够提供无线通信服务,因此受到了学术界和工业界的广泛关注。然而,低效率的能量收集和信息传输会限制WPCN的性能,并且在WPCN中的双重远近效应会导致物联网设备收集的能量与消耗的能量之间的不平衡。为了解决这些问题,提出基于能量回收的主动智能反射面(Intelligent Reflecting Surface,IRS)辅助WPCN波束成形算法,其中物联网设备既能从功率站端收集能量,还能从其他物联网设备的上行信息传输中回收能量。考虑能量收集、吞吐量、时间分配,以及功率站和主动IRS的最大功率等约束,基于能量回收机制,建立了系统总吞吐量最大化的资源分配模型;然后,提出一种基于内层近似和双线性变换的交替优化算法进行求解。仿真结果表明,在相应的参数配置下,能量回收机制的应用能够提升约8.13%的吞吐量,而主动IRS的应用能够提升约61.1%的吞吐量。
文摘现有的无线供电通信网络(Wireless powered communication networks,WPCN)只考虑在下行链路中进行能量传输,没有考虑信息传输的需求。实际上,在很多应用场景中需要考虑利用下行链路传输信息。如何制定发送策略来权衡各用户上行传输速率的公平性与最大化是WPCN中的研究热点。本文提出一种新的在强干扰蜂窝小区中进行能量与信息传输的设计方案,将下行无线信息与能量的同时传输(Simultaneous wireless information and power transfer,SWIPT)与无线供电通信网络相结合,实现基站与用户之间的下行能量传输与上下行双向信息传输。该方案通过上行功率分配、下行时间分配与波束成形以实现上下行最小传输速率的最大化,从而实现各用户上下行信息传输的性能与公平性的平衡。仿真结果表明,与传统的传输方式相比,本方案显著提高用户的最小传输速率。