Opportunistic routing(OR) is an effective way to guarantee transmission reliability in wireless multi-hop networks.However,little research focuses on transmission efficiency.Thus,an analytical model based on open queu...Opportunistic routing(OR) is an effective way to guarantee transmission reliability in wireless multi-hop networks.However,little research focuses on transmission efficiency.Thus,an analytical model based on open queuing network with Markov chains was proposed to evaluate the efficiency.By analyzing two typical ORs,we find duplicate transmission and collision avoidance overhead are the root reasons behind inefficiency.Therefore,a new scheme called dual priority cooperative opportunistic routing(DPCOR) was proposed.In DPCOR,forwarding candidates are configured with dual priority,which enables the network to classify forwarding candidates more effectively so as to reduce the back-off time and obtain more diversity gain.Theoretical analysis and simulation results show DPCOR achieves significant performance improvement with less time overhead compared with traditional routings and typical ORs.展开更多
Transmission Control Protocol (TCP) in infrastructure based vehicular net- works is dedicated to support reliable Intemet services for mobile users. However, an end-to- end TCP flow not only experiences some com- mo...Transmission Control Protocol (TCP) in infrastructure based vehicular net- works is dedicated to support reliable Intemet services for mobile users. However, an end-to- end TCP flow not only experiences some com- mon challenges in wireless mobile networks, such as high packet loss rate, medium access competition, unstable wireless bandwidth, and dynamic topology, etc., but also suffers from performance degradation due to traffic congestion at the Road-Side Units (RSUs) that connect the wireline and wireless networks. In order to address the challenging issues related to reliable TCP transmissions in infrastruc- ture based vehicular networks, we propose an RSU based TCP (R-TCP) scheme. For wireline source nodes, R-TCP adopts a novel flow control mechanism to adjust transmission rates according to the status of bottleneck link. Specifically, during the short wireless connec- tion time in Infrastructure based vehicular net- works, R-TCP quickly chooses an ideal trans- mission rate for data transmissions instead of activating the slow start algorithm after the connection is established, and successfully avoids the oscillation of the transmission rate. Simulation results show that R-TCP achieves great advantages than some relate proposals in terms of throughput, end-to-end delay, and packet loss rate.展开更多
基金supported by the National Science and Technology Major Projects under Grant No.2011ZX03001-007-03
文摘Opportunistic routing(OR) is an effective way to guarantee transmission reliability in wireless multi-hop networks.However,little research focuses on transmission efficiency.Thus,an analytical model based on open queuing network with Markov chains was proposed to evaluate the efficiency.By analyzing two typical ORs,we find duplicate transmission and collision avoidance overhead are the root reasons behind inefficiency.Therefore,a new scheme called dual priority cooperative opportunistic routing(DPCOR) was proposed.In DPCOR,forwarding candidates are configured with dual priority,which enables the network to classify forwarding candidates more effectively so as to reduce the back-off time and obtain more diversity gain.Theoretical analysis and simulation results show DPCOR achieves significant performance improvement with less time overhead compared with traditional routings and typical ORs.
基金supported in part by Fundamental Research Funds for the Central Universities of China under Grant(N140405004) partly by National Natural Science Foundation of China(61373159)+1 种基金partly by Educational Committee of Liaoning Province science and technology research projects under Grant (L2013096)partly by Key Laboratory Project Funds of Shenyang Ligong University (4771004kfs03)
文摘Transmission Control Protocol (TCP) in infrastructure based vehicular net- works is dedicated to support reliable Intemet services for mobile users. However, an end-to- end TCP flow not only experiences some com- mon challenges in wireless mobile networks, such as high packet loss rate, medium access competition, unstable wireless bandwidth, and dynamic topology, etc., but also suffers from performance degradation due to traffic congestion at the Road-Side Units (RSUs) that connect the wireline and wireless networks. In order to address the challenging issues related to reliable TCP transmissions in infrastruc- ture based vehicular networks, we propose an RSU based TCP (R-TCP) scheme. For wireline source nodes, R-TCP adopts a novel flow control mechanism to adjust transmission rates according to the status of bottleneck link. Specifically, during the short wireless connec- tion time in Infrastructure based vehicular net- works, R-TCP quickly chooses an ideal trans- mission rate for data transmissions instead of activating the slow start algorithm after the connection is established, and successfully avoids the oscillation of the transmission rate. Simulation results show that R-TCP achieves great advantages than some relate proposals in terms of throughput, end-to-end delay, and packet loss rate.