期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
IBSNet:用于估计单视角扫描点云交互平分面的神经隐式场
1
作者 袁右文 金朔 赵玺 《计算机科学》 北大核心 2025年第8期195-203,共9页
三维物体之间的空间关系分析对于多物体场景的理解及合成具有重要意义。传统的三维空间关系分析方法计算物体之间的交互平分面(Interaction Bisector Surface,IBS)并进一步提取其特征。然而,当输入为单视角扫描点云时,由于数据完整性的... 三维物体之间的空间关系分析对于多物体场景的理解及合成具有重要意义。传统的三维空间关系分析方法计算物体之间的交互平分面(Interaction Bisector Surface,IBS)并进一步提取其特征。然而,当输入为单视角扫描点云时,由于数据完整性的缺失,使用传统方法往往难以计算出准确的交互平分面,从而极大地影响了下游任务(如场景分类、分析、合成等)。针对此问题,提出一种面向单视角扫描点云的交互平分面估计方法,使用神经网络框架IBSNet估计双物体的差分无符号距离场,然后基于这种隐式距离场的表示提取交互平分面。在ICON数据集上对该方法与其他方法(几何方法、IMNet、Grasping Field)进行了对比实验,并测试了各个方法在面对不同残缺程度和噪声程度的单视角扫描点云时的鲁棒性。实验结果表明,该方法对于残缺的单视角扫描点云有一定的鲁棒性,可以有效地估计出形状之间的交互平分面。 展开更多
关键词 空间关系分析 交互平分面 单视角扫描点云 神经隐式 无符号距离场
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部